python提高for循环速度 操控excel,选择Python还是vba?
操控excel,选择Python还是vba?
对于大量数据,建议使用Python。VBA通常将数据存储在内存中。当数据没有分割,计算机配置不高时,会出现更多的卡。经过数据处理后,如果内存没有释放,电脑也会多用一卡通。VBA一般启动两个CPU核进行数据计算,运算效率较低。现在微软已经停止了VBA的更新,建议大家学习python更方便。如果只操作excel,两种学习难度相差不大,但是Python会有更好的发展空间
还有一种更方便的方法,那就是使用power Bi的三个组件进行数据处理,使用power query进行数据处理,使用PowerPivot进行分析查看的优势数据可视化是指学习周期短,数据可以自动刷新,启动时间相对较快。使用这种方法,效率可能比excel快,但速度仍然不如python快。当然,为了长期的可持续性,建议学习Python,但是开始的时间会比较长
这个答案适用于python3.xpython,而且速度比较快比较慢。但相对而言,python的编写方式比directfor循环更快。例如,循环的标准编写如下:对于范围(10000)中的I:I**2,速度较慢,而标准编写的嵌套循环速度较慢。它可以重写为一个列表推理:[I**2 for I in range(10000)],这比direct for loop的标准编写方法快得多。此外,它还可以使用Python的高级函数映射来执行自动并行计算。它也可以写成列表(map(lambda I:I**2,range(10000)))。map函数几乎和list推理一样快。
python如何提高for循环效率?
对于那些使用了多种开发语言(Java、C#、nodejs、Erlang)然后转用Python进行机器学习的人,我想谈谈我的看法。
首先,Python真的很慢吗?我的回答是真的。非常慢。for循环比CPP慢两个数量级。
那么为什么要使用Python呢?如果我们遍历超过一亿个数据,两个数量级的差异是不可接受的。但是,如果我们使用Python来执行顶层逻辑并阻塞数以亿计的数据,Python只会循环十几次,剩下的就留给CPU和GPU了。所以两个数量级无关紧要?一毫秒和100毫秒在整个系统中并不重要。
Python最大的优点是它可以非常优雅地将数据抛出到高效的C、CUDA中进行计算。Numpy、panda、numba这些优秀的开源库可以非常方便高效地处理海量数据,借助ZMQ、cell等还可以做分布式计算,gevent借助epoll系统IO优化。因此,它不需要花费太多的精力就可以优雅高效地完成海量数据处理和机器学习任务。这就是Python如此流行的原因。
好好想想。同样的性能,代码只有CPP或Java的三分之一或更少,不是很吸引人吗?
python提高for循环速度 python多重for循环优化 python跑循环很慢
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。