2016 - 2024

感恩一路有你

python数据分析师要学什么 想做数据分析是学python还是学大数据?

浏览量:2625 时间:2021-03-15 06:03:49 作者:admin

想做数据分析是学python还是学大数据?

大数据结构中的很多组件都是用Java语言编写的,还有一些是用Scala编写的,比如Hadoop中的HDFS、MapReduce、yarn、ZK、HBase、hive、spark等。这些东西更倾向于数据工程、数据处理和计算。Python语言,包括pandas、numpy、SciPy等数据分析扩展包,通过学习使用这些包,可以充分掌握数据分析的能力。因此,要学习数据分析,建议学习Python而不是大数据。

python数据分析师的就业前景如何?

这是一个非常好的问题。作为一个it从业者和教育工作者,让我来回答这个问题。

首先,从工业互联网和大数据的发展趋势来看,Python数据分析师的就业前景还是非常广阔的。一方面,数据分析本身的应用场景会越来越多。另一方面,python语言也广泛应用于人工智能领域,因此python数据分析师的发展空间相对较大。

如果你想走Python数据分析师的发展道路,你应该从以下三个方面提高你的职业价值:第一,注意新技术的学习。数据分析技术是一个快速迭代的领域,因此数据分析人员必须跟上技术的发展趋势,尤其要注意算法相关知识的学习。从大技术的角度来看,目前的数据分析方法主要是基于统计学和机器学习。机器学习在数据分析领域的发展潜力比较大,而且机器学习也是人工智能技术体系的重要组成部分,因此必须重视机器学习相关知识的学习和深化。

第二,关注平台的价值。数据分析师要想提升自己的职业价值,不仅要提高自己的技术水平,还要从工作效率方面入手,而提高工作效率更有效的途径就是合理利用平台。工业互联网时代必然是平台时代。数据分析作为大数据平台的一项重要功能,必然会得到平台的大量支持,因此数据分析人员必须重视技术平台的应用。

第三,注重行业知识的积累。数据分析师对行业知识的要求非常高。为了使数据分析在行业中发挥更重要的作用,数据分析人员必须能够根据行业选择和应用技术。

操控excel,选择Python还是vba?

对于大量数据,建议使用Python。VBA通常将数据存储在内存中。当数据没有分割,计算机配置不高时,会出现更多的卡。经过数据处理后,如果内存没有释放,电脑也会多卡。VBA一般启动两个CPU核进行数据计算,运算效率较低。现在微软已经停止更新VBA了,更建议大家学习python。如果只操作excel,两种学习难度相差不大,但是Python的开发空间会更好

另一种更方便的方法是使用power Bi的三个组件进行数据处理,power query进行数据处理,PowerPivot进行分析,power Bi进行数据处理的优点数据可视化的主要观点是学习周期短,数据可以自动刷新,启动时间相对较快。使用这种方法,效率可能比excel快,但速度仍然不如python快。当然,为了长时间的持续,建议学习python,但是开始的时间会比较长

虽然这种方法可能会产生很快的结果,效率也很高,但是由于所有的组件都是设计好的,所以基本上可以遵循规则,当您遇到问题时,您不能下推和重建组件,只能替换其他组件或更改组合方法;

并且您不能使用大量数据,因为Excel的逻辑关系太弱,就像构建块会崩溃一样,因此,处理10000个级别的数据有点困难;因此excel不能用于建造高层建筑。毕竟,世界上没有用积木建造的高楼。

从数据分析的角度看,Excel的可视化效果较差,数据采集无法与Python相比。这不是Excel的特长,但是Excel在数理统计方面的表现还是很好的

所以当数据量比较小的时候,你想快速得到结果,而且逻辑关系简单,Excel很香

!缺点是您需要能够做任何事情。你需要能够建造墙壁,建造和绘制图纸。自然比excel难学

从效率上讲,处理简单的问题肯定比excel差,但面对复杂的问题,Python的优势可以凸显

有了这堆原材料,你不仅可以建造高楼,还可以建造飞机,船和火箭头,所以人们说,Python是一种通用语言,它可以做任何事情,除了生孩子

另一点是,Python是开源的,至少比matlab(深执迷)好得多

从数据分析的角度来看,Python绝对比excel、数据采集,数据处理和数据分析、可视化都比excel好,当然这只是用于数据分析

当数据量大、逻辑关系复杂时,Python是最佳的解决方案

PS:

当然VBA是另一点。其实,我觉得VBA的学习难度和python没有太大区别,但是使用起来太难了。让我们看看个人的具体需求。这里我不详细说明具体的区别

python数据分析师要学什么 数据分析软件python python数据分析实例

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。