python数据分析项目实例 想做数据分析是学python还是学大数据?
想做数据分析是学python还是学大数据?
大数据结构中的很多组件都是用Java语言编写的,还有一些是用Scala编写的,比如Hadoop中的HDFS、MapReduce、yarn、ZK、HBase、hive、spark等。这些东西更倾向于数据工程、数据处理和计算。Python语言,包括pandas、numpy、SciPy等数据分析扩展包,通过学习使用这些包,可以充分掌握数据分析的能力。因此,要学习数据分析,建议学习Python而不是大数据。
操控excel,选择Python还是vba?
对于大量数据,建议使用Python。VBA通常将数据存储在内存中。当数据没有分割,计算机配置不高时,会出现更多的卡。经过数据处理后,如果内存没有释放,电脑也会多卡。VBA一般启动两个CPU核进行数据计算,运算效率较低。现在微软已经停止更新VBA了,更建议大家学习python。如果只操作excel,两种学习难度相差不大,但是Python的开发空间会更好
另一种更方便的方法是使用power Bi的三个组件进行数据处理,power query进行数据处理,PowerPivot进行分析,power Bi进行数据处理的优点数据可视化的主要观点是学习周期短,数据可以自动刷新,启动时间相对较快。使用这种方法,效率可能比excel快,但速度仍然不如python快。当然,为了长期的可持续性,建议学习python,但是开始的时间会比较长
这是一个很好的问题。作为一名it从业者,同时我也是一名教育家。让我给你一个答案。
首先,从工业互联网和大数据的发展趋势来看,Python数据分析师的就业前景还是非常广阔的。一方面,数据分析本身的应用场景会越来越多。另一方面,python语言也广泛应用于人工智能领域,因此python数据分析师的发展空间相对较大。
如果你想走Python数据分析师的发展道路,你应该从以下三个方面提高你的职业价值:第一,注意新技术的学习。数据分析技术是一个快速迭代的领域,因此数据分析人员必须跟上技术的发展趋势,尤其要注意算法相关知识的学习。从大技术的角度来看,目前的数据分析方法主要是基于统计学和机器学习。机器学习在数据分析领域的发展潜力比较大,而且机器学习也是人工智能技术体系的重要组成部分,因此必须重视机器学习相关知识的学习和深化。
第二,关注平台的价值。数据分析师要想提升自己的职业价值,不仅要提高自己的技术水平,还要从工作效率方面入手,而提高工作效率更有效的途径就是合理利用平台。工业互联网时代必然是平台时代。数据分析作为大数据平台的一项重要功能,必然会得到平台的大量支持,因此数据分析人员必须重视技术平台的应用。
第三,注重行业知识的积累。数据分析师对行业知识的要求非常高。为了使数据分析在行业中发挥更重要的作用,数据分析人员必须能够根据行业选择和应用技术。
python数据分析项目实例 数据分析软件python sql数据分析
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。