海量数据 海量数据库解决方案?
浏览量:1268
时间:2020-11-14 19:17:25
作者:admin
海量数据库解决方案?
将整体内容分为两部分,在第1部分中以影响数据读取效率的所有要素为类别,对其各自的概念、原理、 特征、应用准则,以及表的结构特征、多样化的索引类型、优化器的内部作用、优化器为各种结果制定的执行计划予以详细说明,并以对优化器的正确理解为基础,提出对执行计划和执行速度产生最大影响的索引构建战略方案;在第2部分中主要介绍提高数据读取效率的具体战略方案,在这部分中介绍与数据读取效率相关的局部范围扫描的原理和具体应用方法,以及对被认为是提高数据库使用效率基础的表连接的所有类型予以详细说明。
mysql表数据量太大,达到了1亿多条数据,除了分库分表之外,还有没有其他的解决方式?
mysql在常规配置下,一般只能承受2000万的数据量(同时读写,且表中有大文本字段,单台服务器)。现在超过1亿,并不断增加的情况下,建议如下处理:
1 分表。可以按时间,或按一定的规则拆分,做到查询某一条数据库,尽量在一个子表中即可。这是最有效的方法
2 读写分离。尤其是写入,放在新表中,定期进行同步。如果其中记录不断有update,最好将写的数据放在 redis中,定期同步
3 表的大文本字段分离出来,成为独立的新表。大文本字段,可以使用NOSQL数据库
4 优化架构,或优化SQL查询,避免联表查询,尽量不要用count(*), in,递归等消耗性能的语句
5 用内存缓存,或在前端读的时候,增加缓存数据库。重复读取时,直接从缓存中读取。
上面是低成本的管理方法,基本几台服务器即可搞定,但是管理起来麻烦一些。
当然,如果整体数据量特别大的话,也不在乎投入费用的话,用集群吧,用TIDB吧
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。