2016 - 2025

感恩一路有你

离散信号如何插值平滑 matlabR2012a中如何进行数据拟合?

浏览量:3265 时间:2023-06-13 22:15:53 作者:采采

matlabR2012a中如何进行数据拟合?

方法一、用数据拟合工具箱 Curve Fitting Tool

打开CFTOOL工具箱。在matlab的command window中输入cftool,即可进入数据拟合工具箱。

输入两组向量x,y。

首先在Matlab的命令行输入两个向量,一个向量是你要的x坐标的各个数据,另外一个是你要的y坐标的各个数据。输入以后假定叫x向量与y向量,可以在workspace里面看见这两个向量,要确保这两个向量的元素数一致,如果不一致的话是不能在工具箱里面进行拟合的。

例如在命令行里输入下列数据:

x [196,186, 137, 136, 122, 122, 71, 71, 70, 33]

y [0.012605 0.013115 0.016866 0.014741 0.022353 0.019278 0.041803 0.038026 0.038128 0.088196]

数据的选取。打开曲线拟合共工具界面,点击最左边的X data和Y data,选择刚才输入的数据,这时界面中会出现这组数据的散点图。

选择拟合方法,点击Fit

左侧results为拟合结果,下方表格为误差等统计数据。

方法二、用神经网络工具箱

1、打开神经网络工具箱,在command window内输入nftool,进入Neural fitting tool

2、导入数据,点击next,导入Inputs为x,Targets为y。

3、选择网络参数,点击next,选择训练集和测试集数量,点next,选隐藏层节点个数。

4、训练数据,点next,选train。

5、绘制拟合曲线,训练完成后电机plot fit

训练结果参数在训练完后自动弹出

神经网络工具箱可以用command写,请搜索关键字matlab 神经网络工具箱函数。

方法三、用polyfit函数写

polyfit函数是matlab中用于进行曲线拟合的一个函数。其数学基础是最小二乘法曲线拟合原理。曲线拟合:已知离散点上的数据集,即已知在点集上的函数值,构造一个解析函数(其图形为一曲线)使在原离散点上尽可能接近给定的值。

调用方法:apolyfit(xdata,ydata,n),

其中n表示多项式的最高阶数,xdata,ydata为将要拟合的数据,它是用数组的输入。输出参数a为拟合多项式 ya1x^n ... anx a,共n 1个系数。

%例程Apolyfit(x,y,2)zpolyval(A,x)plot(x,y,r*,x,z,b)

方法四、自行写算法做拟合

请参考数值分析教科书,拟合、插值方法较多,算法并不复杂,灵活套用循环即可

拟合法和插值法有什么区别呢?

拟合与插值的区别:

1、在含义上不同:插值是指已知某函数的在若干离散点上的函数值或者导数信息,通过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给定离散点上满足约束。 而拟合是指,拟合就是把平面上一系列的点,用一条光滑的曲线连接起来。因为这条曲线有无数种可能,从而有各种拟合方法。拟合的曲线一般可以用函数表示,根据这个函数的不同有不同的拟合名字。

2、在图像上是不同:插值在图像是一定得过了数据的才行;拟合在图像上是必须要得到最接近得结果,是要看总体的效果。

3、在几何意义上不同:拟合是给定了空间中的一些点,找到一个已知形式未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(或几个分片光滑的)连续曲面来穿过这些点。 :拟合- :插值-

数据 方法 参数 函数 工具箱

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。