多边形有几条对角线公式(多边形的对角线公式?)
多边形的对角线公式?
边形的对角线的条数是n(n-3)/2。
因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶点只能和n-3个其他的顶点之间做对角线,又因为每一条对角线都要连结两个顶点,所以要除以2。
设X,Y是任意两个集合,按定义一切序对(x,y)所构成的集合:
X×Y := {(x,y)|(x∈X)∧(y∈Y)}
叫做集合X,Y(按顺序)的直积或笛卡尔积,X×X叫做X^2。
集合中的对角线:
△ = {(a,b)∈X^2| a = b }
是X^2的一个子集,它给出集X中元素的相等关系,事实上,a△b表示(a,b)∈△。即a=b。
多边形的对角线公式?
答:多边形的对角线公式:k=n(n-3)/2。
组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。
任意凸形多边形的外角和都等于360°;多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足】
在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。但是空间多边形不适用。
可逆用:n边形的边=(内角和÷180°) 2;过n边形一个顶点有(n-3)条对角线;n边形共有n×(n-3)÷2=对角线。
多边形的对角线公式?
恩,边形的对角线的公式是n与n-3 的积的一半。因为从n边形的一个顶点出发,能画出n-3条对角线。而恩边形共有n个顶点。这样就有n乘n-3条对角线,但是由于两个顶点对角线互相重合。所以我们还要把他们的乘积除以二。例如五边形,它就有5×2。再除以二条对角线。即共有五条对角线
求多边形对角线条数公式?
设多边形的边数为n,从它的一个顶点出发引对对角线,除了这点本身、和与它相邻的两个顶点外,与其他的顶点所连接的线段都是对角线,故这样的对角线可引 (n-3)条;n边形有n个顶点,所以可以引 n(n-3)条。
又因为n(n-3)条中每条对角线都计算了两次,凸多边形的对角线共有:n(n-3)/2 条,所以凸多边形的对角线公式是n(n-3)/2 条。
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。