svm处理二分类问题 既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?
浏览量:1879
时间:2021-04-04 17:19:46
作者:admin
既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?
这取决于数据量和样本数。不同的样本数和特征数据适合不同的算法。像神经网络这样的深度学习算法需要训练大量的数据集来建立更好的预测模型。许多大型互联网公司更喜欢深度学习算法,因为他们获得的用户数据是数以亿计的海量数据,这更适合于卷积神经网络等深度学习算法。
如果样本数量较少,则更适合使用SVM、决策树和其他机器学习算法。如果你有一个大的数据集,你可以考虑使用卷积神经网络和其他深度学习算法。
以下是一个图表,用于说明根据样本数量和数据集大小选择的任何机器学习算法。
如果你认为它对你有帮助,你可以多表扬,也可以关注它。谢谢您
首先,它取决于基础,如数学、软件、算法、建筑学、心理学、自动化、脑科学、统计学等等。
其次,要看你想解决哪些问题,比如视觉识别、自动驾驶、天气预报、语音语义学、定量金融、图像处理、金融分析等,每个领域的要求都不一样。例如,那些做医学碰撞诊断的人需要学习一些影像学知识。
需要找一位有学问的专业老师,如果自学,就必须进入专业交流圈。
svm处理二分类问题 svm要多少样本才能分类 svm处理多分类问题
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。
上一篇
蓝鲸的自述 蓝鲸网站