python程序设计基础教程 学Python一定要会算法吗?
学Python一定要会算法吗?
一开始,你不必好好学习算法。但是随着技术的发展,仍然需要算法,否则只能做一些工作。
1. 学好软件开发离不开计算机理论基础,比如数据结构、操作系统、网络技术、算法研究等,如果你喜欢这项技术,那就不是问题。先开始,你可以弥补。
2. 算法是软件开发的灵魂。好的算法写不出好的程序。
3. 如何学习算法,首先选择经典算法教材。基本的可以从数据结构中学习,其中包含一些基本的算法,然后再学习特殊的算法(实际上,在数据结构领域学习算法一般就足够了)。网上还有很多论坛、算法网站,为了吸引眼球,它们一般都很通俗易懂。大多数算法都是C语言,但是语言在算法层次上是相互联系的,因此理解算法模型是最重要的。
4. 万事开头难。只要你开始,剩下的就是慢慢操作这项技术。该算法在实际应用中是最快、最强的。
希望对您有所帮助
我已经使用Python 7年多了,现在我正在从事视频对象识别算法的开发,使用tensorflow,它也是基于Python语言的。Python是一种解决所有问题的语言,值得拥有
!我从2012年开始学习机器学习,因为没有指导,我走了很多弯路,浪费了很多时间和精力。一开始,我读了《机器学习实践》一书。虽然我不懂,但我还是把书中所有的例子都跑了一遍,渐渐发现自己不懂算法也能达到预期的效果。然后,我会直接开发我想要的程序。当我遇到需要机器学习的部分时,我会直接复制它。一周后,演示会出来。在这个时候,你会发现你已经开始了。剩下的就是理解每种算法的范围和局限性。
不要掉进无休止的书堆里,练习和做项目
!呃,地铁到了。我要去工作了。我还没做完呢。有机会的话我会继续讨论的
对于那些使用过几种开发语言(Java、C#、nodejs、Erlang)然后转用Python进行机器学习的人,我想谈谈我的看法。
首先,Python真的很慢吗?我的回答是真的。非常慢。for循环比CPP慢两个数量级。
那么为什么要使用Python呢?如果我们遍历超过一亿个数据,两个数量级的差异是不可接受的。但是,如果我们使用Python来执行顶层逻辑并阻塞数以亿计的数据,Python只会循环十几次,剩下的就留给CPU和GPU了。所以两个数量级无关紧要?一毫秒和100毫秒在整个系统中并不重要。
Python最大的优点是它可以非常优雅地将数据抛出到高效的C、CUDA中进行计算。Numpy、panda、numba这些优秀的开源库可以非常方便高效地处理海量数据,借助ZMQ、cell等还可以做分布式计算,gevent借助epoll系统IO优化。因此,它不需要花费太多的精力就可以优雅高效地完成海量数据处理和机器学习任务。这就是Python如此流行的原因。
好好想想。同样的性能,代码只有CPP或Java的三分之一或更少,不是很吸引人吗?
python程序设计基础教程 python教程入门 python算法大全
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。