python从入门到精通百度网盘 Python语言其实很慢,为什么机器学习这种快速算法步骤通常还是用呢?
Python语言其实很慢,为什么机器学习这种快速算法步骤通常还是用呢?
对于那些使用了多种开发语言(Java、C#、nodejs、Erlang)然后转到Python进行机器学习的人,我想谈谈我的看法。
首先,Python真的很慢吗?我的回答是真的。非常慢。for循环比CPP慢两个数量级。
那么为什么要使用Python呢?如果我们遍历超过一亿个数据,两个数量级的差异是不可接受的。但是,如果我们使用Python来执行顶层逻辑并阻塞数以亿计的数据,Python只会循环十几次,剩下的就留给CPU和GPU了。所以两个数量级无关紧要?一毫秒和100毫秒在整个系统中并不重要。
Python最大的优点是它可以非常优雅地将数据抛出到高效的C、CUDA中进行计算。Numpy、panda、numba这些优秀的开源库可以非常方便高效地处理海量数据,借助ZMQ、cell等还可以做分布式计算,gevent借助epoll系统IO优化。因此,它不需要花费太多的精力就可以优雅高效地完成海量数据处理和机器学习任务。这就是Python如此流行的原因。
好好想想。同样的性能,代码只有CPP或Java的三分之一或更少,不是很吸引人吗?
作为一名研究生,除了可以用python写各种算法之外,还应该如何提高自己的python水平?
作为一名研究生,您用Python编写算法。我认为你想发展大数据和人工智能。
近年来,随着大数据和人工智能的爆炸式发展,Python变得越来越流行。如果你想提高你的Python水平,我想你可以从以下几点开始
!Apache spark是一个大数据处理框架,计算速度快,使用方便,支持复杂分析,有可能取代MapReduce。
尽管Python在机器学习和人工智能方面有很好的应用,但Python有一个很大的缺陷。它不支持分布式计算,但这并不重要。Spark提供了一个优秀的Python接口pyspark。有了它,python在分布式计算和流计算方面有了很大的改进。
另外,spark的核心RDD弹性分布式数据集与Python中panda的数据帧非常相似,可以很容易地相互转换。因此spark赋予Python以分布式方式处理大型数据集的能力。
Python有许多强大的web后端框架,如Django、flash等。学习这一点可以巩固Python的基础,并使用Python的高级用法,如装饰器、类、魔术方法、数据库等。
您不能总是在一台机器上使用该型号。您可以在大数据框架和网站中部署模型。这要求您了解后端和分布式计算。学习这两个方面,不仅可以提高python的水平,也可以让你在未来的大数据和人工智能领域发力。
为什么有些算法岗位,需要用C 而不是python?
C/C是一种相对低级的语言,它可以非常精细地控制CPU/内存和其他计算机资源,尤其是硬件。在算法运算最精细的时候使用它们是很自然的。
但它们的优点也是缺点。精细的操作自然需要精细的编程,精细的编程自然需要复杂的语言设置,比如什么是指针,什么是指针函数,什么是函数指针当你理解了这些概念,你可能就没有编写代码的冲动了。更重要的是,如果你想编写高性能的代码,你必须精通这些概念
Python的一个非常重要的特性就是所谓的“粘合语言”,也就是说它可以将用不同语言编写的代码模块组合起来,然后通过Python调用它们。实际上,大多数算法库都是用C/C语言编写的,然后提供Python接口供用户使用。毕竟,大多数人只需要知道如何调用封装的算法。但是如果你想实现你自己的算法,你必须知道C/C
例如,Python就像一个电视遥控器,C/C就像遥控器中的电路板。通常,如果你想换台,只需按一下按钮。但有一天你只需要一个将屏幕旋转90度的功能,遥控器没有这个功能,但可以通过卸下遥控板,插入几个组件来实现。你是做什么的?
python自学难度有多大,怎样算出师?
例如,当您遇到需要计算文章中单词的出现率时,您需要知道使用什么方法。例如,您需要首先使用string方法对其进行分段,然后将其保存到字典中进行统计。有了这样一个总体思路,您就可以专门学习字符串方法和字典的使用。即使你以前没有使用过这些方法,你也可以解决这个问题,即使你已经完成了。
python从入门到精通百度网盘 廖的python教程 百度云 python教学资源百度网盘
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。