卷积神经网络正则化 卷积神经损失函数怎么加入正则化?
卷积神经损失函数怎么加入正则化?
[AI疯狂高级正规化-今日头条]https://m.toutiaocdn.com/item/6771036466026906123/?app=newsuArticle&timestamp=157662997&reqid=201912180846060100140470162DE60E99&groupid=6771036466026906123&ttfrom=copylink&utmuSource=copylink&utmuMedium=toutiaoios&utmuCampaign=client神经网络正则化技术包括数据增强、L1、L2、batchnorm、dropout等技术。本文对神经网络正则化技术及相关问题进行了详细的综述。如果你有兴趣,可以关注我,继续把人工智能相关理论带到实际应用中去。
可以通过直接减少hidden layer、hidden unit而不是加正则化来解决神经网络过拟合吗?
简单的答案是肯定的。复杂的答案是不确定的(见下文)。
这个概念。
(图片作者:chabacano,许可证:CC by sa 4.0)
从图像中可以明显看出,过度拟合的曲线过于曲折(复杂),对现有数据拟合得非常好,但它不能很好地描述数据的规律,因此面对新数据,我们不得不停下来。
从上面我们得到一个直觉,过度拟合的模型往往比正确的模型更复杂。
。您所说的“直接减少隐藏层和隐藏单元的数量”使网络更薄、更窄正是简化模型的方法。这个想法没有问题。
但是,我们可能必须尝试找出它是否有效。因为,一般来说,更复杂的网络可能更有表现力。
一般来说,神经网络仍然是一个黑匣子。有时,正则化的效果更好,有时则不然。一些问题可能是复杂的网络工作得很好,另一些问题可能是深度和狭窄的网络工作得很好,另一些问题可能是薄而宽的网络工作得很好,或者一些问题可能是简单的网络工作得很好。
具体来说,为了解决过拟合问题,除了简化模型(即您称之为“直接减少隐藏层、隐藏层、隐藏层”)外,还存在漏项(在某种意义上,我们可以看到模型的某些部分由于简化模型的绕道而无法工作),以及人为增加稀疏性限制(稀疏性和简化之间存在模糊关系)或尽快停止训练。
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。