2016 - 2024

感恩一路有你

python如何实现数据可视化 数据可视化分析除了需要编码的Python,还有更简单的方式吗?

浏览量:2191 时间:2021-03-18 01:27:53 作者:admin

数据可视化分析除了需要编码的Python,还有更简单的方式吗?

有很多数据可视化分析工具,推荐两个:

这也是一个非常强大的可视化工具,连接数据源后可以很容易地制作各种可视化图表

如果以上两个工具要制作简单的图表,则不需要任何代码。如果要进行复杂的数据分析,就需要建立数据模型,然后进行可视化。

什么是数据可视化?

数据可视化被许多学科视为视觉传达的现代等价物。它包括创建和研究数据的可视化表示。为了清晰有效地传递信息,数据可视化采用了统计图形、图表、信息图形等工具。数字数据可以用点、线或条进行编码,以直观地传递定量信息。有效的可视化帮助用户分析和推断数据和证据。它使复杂数据更易于访问、理解和使用。用户可能有特定的分析任务,例如比较或理解因果关系。图形的设计原则(即显示比较或显示因果关系)遵循该任务。表格通常用于用户查找特定度量的位置,而各种类型的图表用于显示数据中一个或多个变量的模式或关系。

数据可视化不仅是一门艺术,也是一门科学。有人认为它是描述性统计的一个分支,也有人认为它是一种植根于理论的发展工具。互联网活动产生的数据量的增加和环境中传感器数量的增加被称为“大数据”或物联网。这些数据的处理、分析和交流给数据可视化带来了道德和分析上的挑战。被称为数据科学家的数据科学领域和实践者有助于应对这一挑战。

数据可视化与信息图形、信息可视化、科学可视化、探索性数据分析和统计图形密切相关。自2000年以来,数据可视化已经成为科学与信息可视化相结合的一个活跃的研究、教学和开发领域。有学者认为,数据可视化的理想状态不仅是传达清晰,更是激发受众的参与和关注。

会用Excel,真的需要再学Python吗?

虽然这种方法可以快速生成结果,而且效率很高,但因为它使用了设计良好的组件,所以您基本上可以遵循规则。遇到问题时,不能向下推组件并重建它们。您只能更换其他组件或更改组合方法;

并且不能使用大量数据,因为Excel的逻辑关系太弱,就像积木一样,处理万级数据有点困难,就像倒塌一样,所以Excel不能用来建造高层建筑。毕竟,世界上没有高楼是用积木建造的。

从数据分析的角度看,Excel的可视化效果较差,数据采集无法与Python相比。这不是Excel的特长,但是Excel在数理统计方面的表现还是很好的

所以当数据量比较小的时候,你想快速得到结果,而且逻辑关系简单,Excel很香

!缺点是您需要能够做任何事情。你需要能够建造墙壁,建造和绘制图纸。自然比excel难学

从效率上讲,处理简单的问题肯定比excel差,但面对复杂的问题,Python的优势可以凸显

有了这堆原材料,你不仅可以建造高楼,还可以建造飞机,船和火箭头,所以人们说,Python是一种通用语言,它可以做任何事情,除了生孩子

另一点是,Python是开源的,至少比matlab(深执迷)好得多

从数据分析的角度来看,Python绝对比excel、数据采集,数据处理和数据分析、可视化都比excel好,当然这只是为了数据分析

当数据量大、逻辑关系复杂时,Python是最佳解决方案

]PS:

当然VBA是另一点。其实,我觉得VBA的学习难度和python没有太大区别,但是使用起来太难了。让我们看看个人的具体需求。这里我就不详细说明具体的区别了

python作为一种编程语言,利用了近年来人工智能的发展趋势,头脑敏捷而暴力。学习python之后,您可以选择以下方向。

1. 后台服务器。现在,这通常与整个堆栈相关联,即所谓的全包前端和后端。在这个方向上,在学习了python的基础知识之后,还需要学习前端知识、数据库知识、Linux系统相关知识,而且几乎所有做后台的人都要使用Linux系统。在学习了这些之后,我们将开始学习后端框架,如flash、Django和tornado。

2. 数据分析。这是目前一个热门的方向。在学习了python的基础知识之后,您需要学习numpy、pandas、Matplotlib、SciPy和其他数据统计分析库。当然,你必须在这方面有一些数学知识。

3. 自动操作和维护。在这个方向上,除了Python基金会,您还必须精通Linux系统。一般来说,你做Linux操作和维护。这一方向对Linux系统提出了更高的学习要求。

4. AI方向。这个方向是当前Python火爆的主要原因。但是这个方向不仅需要Python的基础,而且还需要学习各种算法,对数学有很高的要求。在熟悉了算法之后,我们开始学习各种与人工智能相关的库。这个方向可以细分为许多方向,如计算机视觉、自然语言处理等。你可以学习你想从事的算法和实用库。

学习python之后,有很多方向可供选择。首先,选择一个好的方向,然后继续学习该方向所需的技能。通过做项目指导学习,可以逐步满足工作要求。当然,工作不能停止学习,编程是需要继续学习的。来吧。

python如何实现数据可视化 python数据分析图表展示 python怎么定义一个变量

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。