2016 - 2024

感恩一路有你

深度卷积神经网络算法 深度学习和普通的机器学习有什么区别?

浏览量:1647 时间:2021-03-17 22:03:06 作者:admin

深度学习和普通的机器学习有什么区别?

一张图片显示了这种关系。机器学习是人工智能的重要领域之一,而深度学习是机器学习的一个分支。深度学习之所以近年来流行起来,是因为它突破了传统机器学习无法解决的一些问题。

机器学习的意义在于代替人工完成重复性工作,识别出统一的规则(模式)。但是对于传统的机器学习来说,特征提取的难度不小(特征可以是像素、位置、方向等)。特征的准确性将在很大程度上决定大多数机器学习算法的性能。为了使特征准确,在特征工程部分需要大量的人力来调整和改进特征。完成这一系列工作的前提是,数据集中所包含的信息量是充分的,并且易于识别。如果不满足这一前提,传统的机器学习算法将在信息的杂乱中失去其性能。深度学习的应用正是基于这个问题。它的深层神经网络使它能够在杂波中学习,自动发现与任务相关的特征(可以看作是自发学习的特征工程),并提取高级特征,从而大大减少了特征工程部分任务所花费的时间。

另一个明显的区别是他们对数据集大小的偏好。传统的机器学习在处理规则完备的小规模数据时表现出良好的性能,而深度学习则表现不好。随着数据集规模的不断扩大,深度学习的效果会逐渐显现出来,并变得越来越好。对比如下图所示。

如何理解卷积神经网络里卷积过滤器的深度问题?

我们通常看到的卷积滤波器原理图是这样的:

这实际上是卷积滤波器的“展平”或“展平”。例如,上图中的粉红色卷积滤波器是3x3x3,即长3,宽3,深3。然而,在图中,它是在两个维度中绘制的-深度被省略。

.由于卷积滤波器的深度与输入图像的深度相同,所以原理图中没有绘制深度。如果同时绘制深度,效果如下:

(图片来源:mlnotebook)

如上所述,卷积滤波器的深度与输入图像的深度相同,即3。

顺便说一下,输入图像深度是3,因为输入图像是彩色图像,深度是3,分别是R、G和b值。

(图片来源:mlnotebook)

总之,卷积滤波器的深度应该与输入数据的深度一致。

cnn卷积神经网络中的卷积核怎么确定?

从模型中学习卷积参数,手动确定卷积核的大小和数目。二维卷积核的大小通常是奇数,例如1*1、3*3、5*5、7*7。卷积核数是网络中的信道数。常用的是128 256 512,需要根据具体任务来确定。

另外,最近,神经网络自动搜索结构非常流行,最著名的是Google的nasnet,它使用一些启发式遍历来寻找特定数据集的最优网络结构

深度卷积神经网络算法 卷积神经网络三大特点 卷积神经网络属于深度学习吗

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。