2016 - 2024

感恩一路有你

决策树算法的应用场景 既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?

浏览量:1483 时间:2021-03-17 20:08:20 作者:admin

既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?

这取决于数据量和样本数。不同的样本数和特征数据适合不同的算法。像神经网络这样的深度学习算法需要训练大量的数据集来建立更好的预测模型。许多大型互联网公司更喜欢深度学习算法,因为他们获得的用户数据是数以亿计的海量数据,这更适合于卷积神经网络等深度学习算法。

如果样本数量较少,则更适合使用SVM、决策树和其他机器学习算法。如果你有一个大的数据集,你可以考虑使用卷积神经网络和其他深度学习算法。

以下是一个图表,用于说明根据样本数量和数据集大小选择的任何机器学习算法。

如果你认为它对你有帮助,你可以多表扬,也可以关注它。谢谢您

如何学习编写人工智能软件?

我主修软件开发,方向基本确定了,要么前端,要么后端,要么大数据。

首先,编程领域相对较大。为什么它很大?正如我前面提到的,学习软件开发,无论是前端还是后端,都是编程,大数据也是编程,人工智能也是编程

因此,没有明确的方向。

在编程世界中,有一种古老的语言叫做C语言,它是C和Java的祖先。所有语言的基础都来自于它,所以你最好先了解它。

但是现在,由于人工智能的普及,很多人都在学习python,很多人说它的语法简单易学。这是正确的。也有人说它是初学者学习的最好的语言。事实上,如果没有严格的语法,它可以说是“为所欲为”。Java写100行代码,可能只需要写20行。

不过,我还是想谈谈主角!它是C语言,为什么呢,因为你只学它,再学C和Java就容易多了,可以说它很快就会带领你成为一名程序员。当然,不是绝对的。

学习python并非不可能,但它与C/C和Java不同。经过学习,回首C,我觉得它不是一个世界。

现在大学是基于C语言的,你不妨从它开始。

我希望这个答案能对您有所帮助。

决策树算法的应用场景 决策树算法原理 决策树回归算法原理

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。