2016 - 2024

感恩一路有你

机器人 python 要如何开始从零掌握Python机器学习?

浏览量:2549 时间:2021-03-17 12:44:40 作者:admin

要如何开始从零掌握Python机器学习?

我已经使用Python 7年多了,现在我正在从事视频对象识别算法的开发,使用的是同样基于Python语言的tensorflow。Python是一种解决所有问题的语言,值得拥有

!我从2012年开始学习机器学习,因为没有指导,我走了很多弯路,浪费了很多时间和精力。一开始,我读了《机器学习实践》一书。虽然我不懂,但我还是把书中所有的例子都跑了一遍,渐渐发现自己不懂算法也能达到预期的效果。然后,我会直接开发我想要的程序。当我遇到需要机器学习的部分时,我会直接复制它。一周后,演示会出来。在这个时候,你会发现你已经开始了。剩下的就是理解每种算法的范围和局限性。

不要掉进无休止的书堆里,练习和做项目

!呃,地铁到了。我要去工作了。我还没做完呢。有机会我会继续讨论的

谢谢你的邀请

!作为IT行业从业者和计算机专业教育者,让我回答这个问题。

首先,如果您从学习Python语言本身的角度出发,您不需要配置太高的计算机。普通办公电脑完全可以满足要求,或者大部分在售笔记本电脑都可以满足基本的学习要求。

但是,学习Python通常必须有明确的学习方向。不同的学习方向在计算机配置上仍有一些具体的要求。目前Python的主要学习方向包括web开发、大数据开发、人工智能开发和嵌入式开发,其中大数据开发和人工智能开发对计算机配置仍有一定的要求。

大数据领域的发展通常对计算机内存有更高的要求。一个重要原因是,大数据平台通常对内存有更高的要求。很多大数据平台至少需要8g内存,而一些商业大数据平台对内存的要求更高。因此,如果你想学习Python,从事大数据开发,就需要配置一个内存,计算机越大越好。另外,对于初学者来说,通常需要通过虚拟机在自己的计算机上构建伪分布式集群,这对内存容量提出了更高的要求。

人工智能的发展通常需要一个强大的GPU,所以如果你想学习Python进行机器学习(深度学习)、计算机视觉等方面的开发,就必须配备一个更好的显示卡,这样会大大提高实验速度。另外,人工智能的发展方向对CPU和内存也有一定的要求。

最后,在硬盘的配置上,最好选择速度更快的固态盘,而且容量不需要太大。

学Python的电脑要什么样的配置?

对于那些使用了多种开发语言(Java、C#、nodejs、Erlang)然后转用Python进行机器学习的人,我想谈谈我的看法。

首先,Python真的很慢吗?我的回答是真的。非常慢。for循环比CPP慢两个数量级。

那么为什么要使用Python呢?如果我们遍历超过一亿个数据,两个数量级的差异是不可接受的。但是,如果我们使用Python来执行顶层逻辑并阻塞数以亿计的数据,Python只会循环十几次,剩下的就留给CPU和GPU了。所以两个数量级无关紧要?一毫秒和100毫秒在整个系统中并不重要。

Python最大的优点是它可以非常优雅地将数据抛出到高效的C、CUDA中进行计算。Numpy、panda、numba这些优秀的开源库可以非常方便高效地处理海量数据,借助ZMQ、cell等还可以做分布式计算,gevent借助epoll系统IO优化。因此,它不需要花费太多的精力就可以优雅高效地完成海量数据处理和机器学习任务。这就是Python如此流行的原因。

好好想想。同样的性能,代码只有CPP或Java的三分之一或更少,不是很吸引人吗?

Python语言其实很慢,为什么机器学习这种快速算法步骤通常还是用呢?

感谢您的邀请:作为一种非常流行的语言,python有着广泛的应用场景。事实上,许多开发语言可以用于不同的领域。Python不是为特定目的而产生的。但是,它是一种通用的脚本语言,也称为glue语言。Glue意味着Python可以在C语言接口的帮助下驱动几乎所有已知的软件和模块。只要我们使用它,你通常可以找到一个开源库。安装后,您可以驱动它。无论是数据库、网络、互联网、图形、游戏、科学计算、GUI、OA、自动控制,甚至宇航员都在使用它。

现在我们来谈谈Python,它可以用来做:

1。系统编程2。图形处理3。数学处理4。文本处理5。数据库编程6。网络编程7。网络编程8。多媒体应用9。Pymo发动机10。黑客编程11。用Python12编写的简单爬虫:人工智能

看到这么多应用场景非常强大,但Python通常不会作为工程语言出现。也就是说,常规软件生产不使用它。主要使用Java,C#,XML,C。至于为什么,这是软件工程的需要。Python没有完整的语法检查。

但它现在不影响Python的状态。很多人加入Python的大军是因为Python很容易入门,而且学习成本相对较低。它有一个丰富的支持库,可以直接调用,以高效地完成不同需要的工作。

你知道,谷歌最早的搜索引擎是由python编写的。

希望我的回答能对你有所帮助。作为人工智能的重要组成部分,机器学习和计算机视觉是近年来研究生的热门话题。机器学习和计算机视觉需要处理各种算法,所以我们经常需要使用一些方便的工具来辅助研究,比如MATLAB就是一个常用的工具。

与Python相比,Matlab更像一个工具。虽然我经常说编程语言是一种工具,但python可以做除科学计算之外的其他事情,比如web开发。因此,Python是一种编程语言,而MATLAB更接近于一种工具。目前,matlab还支持语言输出。

因为我是作为一个程序员出生的,所以在早期我并不费心使用MATLAB。直到我们的一位同事在我面前展示了MATLAB的强大功能,我才对MATLAB更感兴趣,并用了一段时间。使用MATLAB有很强的方便性。以前需要很多代码的地方,只需要简单的配置,这样matlab就可以节省很多时间。如果你在做研究,你不需要实现这个项目,所以使用MATLAB绝对是一个不错的选择,你不必在编码上投入太多精力。

后来,我开始做机器学习,因为我的很多研究内容是要实现的(基于实际应用),所以我直接用python。在使用python之前,我使用了java(其中有更多的故事)。如果您需要在实践中使用该算法,那么必须正确地使用python。MATLAB擅长分析和建模。

Python机器学习需要使用numpy、Matplotlib和SciPy,使用起来并不复杂。学习Python也相对简单易用。

建议在研究生阶段学习Python,但这取决于导师的具体安排和指导。虽然他们都做机器学习,但我的研究更倾向于机器学习应用,所以我推荐python。

机器人 python 国内好的python培训机构 python编程

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。