sobel边缘检测算法步骤 边缘检测算法有哪些呢?
边缘检测算法有哪些呢?
图像的边缘检测是一种定位二维或三维图像(特别是医学图像)中的对象的边缘的系统。通过输入端(310)接收表示该图像的各元素值的数据元素集。该数据集被存储在存储装置(320)中。处理器(340)确定该图像中的对象的边缘。该处理器计算所述数据元素的至少一阶和/或二阶导数,并且计算该图像的等照度线曲率,所述曲率由κ标识。该处理器还确定校正因数α,该校正因数α对于由对象的曲率和/或所述数据的模糊造成的边缘错位进行校正。该校正因数α取决于所述等照度线曲率κ。然后,该处理器确定取决于所计算出的导数和所述等照度线曲率的算子的过零点。该系统的输出端(330)提供对于该图像中的边缘位置的指示。早期的有边缘算子法、曲线拟合法、模板匹配法、门限化法。近年来又有许多新的边缘检测的算法:小波变换、小波包的边缘检测等,基于数学形态学、模糊理论和神经网络的边缘检测算法等。
canny边缘检测算法是怎么实现的?
matlab里有canny算子的算法,已经写好,请参考edge函数
如何进行边缘检测算法的阈值确定?
一旦我们计算出导数之后,下一步要做的就是给出一个阈值来确定哪里是边缘位置。阈值越低,能够检测出的边线越多,结果也就越容易受到图片噪声的影响,并且越容易从图像中挑出不相关的特性。与此相反,一个高的阈值将会遗失细的或者短的线段。一个常用的这种方法是带有滞后作用的阈值选择。这个方法使用不同的阈值去寻找边缘。首先使用一个阈值上限去寻找边线开始的地方。一旦找到了一个开始点,我们在图像上逐点跟踪边缘路径,当大于门槛下限时一直纪录边缘位置,直到数值小于下限之后才停止纪录。这种方法假设边缘是连续的界线,并且我们能够跟踪前面所看到的边缘的模糊部分,而不会将图像中的噪声点标记为边缘。
sobel边缘检测算法步骤 什么是图像的边缘检测 边缘检测有哪些应用
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。