2016 - 2024

感恩一路有你

tensorflow框架 tensorflow怎么调用ckpt继续训练?

浏览量:2389 时间:2021-03-17 07:23:14 作者:admin

tensorflow怎么调用ckpt继续训练?

在训练模型之后,为了以后重用它,我们通常需要保存模型的结果。如果用张量流实现神经网络,需要节省的是神经网络的权值。建议您可以使用saver类来保存和加载模型的结果。1使用tf.列车保护器. save()方法保存模型

tensorflow训练内存不足怎么办?

使用tensorflow时,有没有办法限制每个任务占用的视频内存的大小

使用tensorflow,您必须了解tensorflow:

使用图形表示计算任务。

在称为会话的上下文中执行图形。

使用tenor表示数据。

使用变量(variable)维护状态。

使用提要和提要,您可以为任意操作赋值或从中获取数据。

Keras还是TensorFlow,程序员该如何选择深度学习框架?

如果您想用少量代码尽快构建和测试神经网络,keras是最快的,而且顺序API和模型非常强大。而且keras的设计非常人性化。以数据输入和输出为例,与keras的简单操作相比,tensorflow编译码的构造过程非常复杂(尤其对于初学者来说,大量的记忆过程非常痛苦)。此外,keras将模块化作为设计原则之一,用户可以根据自己的需求进行组合。如果你只是想快速建立通用模型来实现你的想法,keras可以是第一选择。

但是,包装后,keras将变得非常不灵活,其速度相对较慢。如果高度包装,上述缺点将更加明显。除了一些对速度要求较低的工业应用外,由于tensorflow的速度较高,因此会选择tensorflow

如果您在验证您的想法时,想定义损失函数而不是使用现有的设置,与keras相比,tensorflow提供了更大的个性空间。此外,对神经网络的控制程度将在很大程度上决定对网络的理解和优化,而keras提供的权限很少。相反,tensorflow提供了更多的控制权,比如是否训练其中一个变量、操作梯度(以获得训练进度)等等。

虽然二阶车型功能性更强,但用户需要选择更多功能性车型。例如,如果您想加快计算速度,可以使用tensorflow的thread函数来实现与多个线程的相同会话。此外,它还提供了调试器功能,有助于推断错误和加快操作速度。

tensorflow框架 tensorflow怎么训练模型 tensorflow训练模型

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。