2016 - 2024

感恩一路有你

springboot分库分表方案 当数据库扼住系统性能咽喉,直接分库分表能解决吗?

浏览量:1653 时间:2021-03-17 06:41:02 作者:admin

当数据库扼住系统性能咽喉,直接分库分表能解决吗?

子库和子表是一种相对落后的优化方法,因为成本相对较高。

遇到数据库瓶颈:

-首先考虑SQL优化,这是最简单的方法。对现有系统没有影响。

-第二个是考虑数据库读写分离,这也是一个相对简单的方法。在数据库级配置中,系统级只需要调整获取数据库连接的逻辑即可。读取数据时,可以同时获得主库和从库连接。写入数据时,仅获取主库连接。

-考虑添加缓存层。数据缓存在缓存中,再次访问时不再从数据库检索。通常,缓存层对系统是透明的,对系统本身没有影响。但是,cache的引入也引入了相应的需要考虑的问题,如雪崩、命中率、分布式cache等]-还有一种非技术手段,就是改变需求。性能问题的原因是否不合理?还是要求太复杂?需求可以简化吗?这种方法对系统的影响相对较小。

-最后,考虑子数据库和子表。优先考虑子数据库,因为它比子表简单。将相应的表移动到新的数据库中,并调整系统的逻辑以获得数据库连接。在这里,我们需要考虑移动哪些表。在提高性能的前提下,我们首先尝试避免分布式事务。

-最后,考虑子表。子表的主要原因是单个表中的数据量很大。子表分为纵断面和横断面。垂直剪切是按列剪切的,例如用户表。常用信息为基本信息表,其他信息为明细表。横切是按行切割。例如,一个有1亿数据的表被分成10个有1000万数据的表。这涉及到数据应该存储在哪个表中或从哪个表中获取。在表被划分之后,可以对数据库进行进一步的优化。

-如果涉及分布式事务,应考虑如何保证分布式事务。理论上,2个,3个,帕克斯,帽子,底座。相应中间件的使用。

系统的设计和优化不是模仿的问题,而是需要根据实际场景进行处理。

mysql表数据量太大,达到了1亿多条数据,除了分库分表之外,还有没有其他的解决方式?

在正常配置下,MySQL只能承载2000万数据(同时读写,表中有大文本字段,单服务器)。现在已经超过1亿,而且还在增加,建议按以下方式处理:

1子表。它可以按时间或一定的规则进行拆分,以便尽可能地查询子表中的数据库。这是最有效的方法。特别是写,放入一个新表,并定期同步。如果记录不断更新,最好将写入的数据放在redis中,并定期同步表3的大文本字段,将它们分隔成一个新的独立表。对于较大的文本字段,可以使用NoSQL数据库

4优化体系结构,或者优化SQL查询,避免联合表查询,尽量不要使用count(*)、in、recursion等性能消耗语句

5使用内存缓存,或者在前端读取时增加缓存数据库。重复读取时,直接从缓存中读取。

以上是一种低成本的管理方法,基本上几个服务器就可以做到,但是管理起来有点麻烦。

当然,如果整体数据量特别大,我们也不在乎投资成本,那就用集群和tidb吧

现在学习大数据的人越来越多,很多学生在报名上思之前都会问一些关于大数据实践的问题,上思的咨询老师也都问了回答了很多问题,比如大数据培训和学习是否可靠,如何选择大数据培训机构等等。今天,尚思将写一篇文章来解释大数据培训和学习。

很多想参与大数据技术工作的人都参加过大数据培训,但大数据培训真的可靠吗?现在无论是大数据培训还是其他学习,我们都称之为职业技能学习,这是以工作为导向的。但是,工作的标尺是看不见的,它无法量化标准,所以有大数据培训这种专业力量培养的好与坏的情况,这个时候我们需要擦亮眼睛。在练习之前,我们应该考虑以下问题:

1。你需要大数据培训吗

首先,如果你想自学大数据技术,你必须具备自学能力。自学能力是学习it技能的必要条件。如果自学能力不够,建议不要这样做。自律必须很强。我们必须严格要求自己。我们不应该让懒惰占便宜。我们应该有计划地学习。

2. 大数据培训能得到什么帮助

既然我们已经把钱花在了大数据培训和学习上,就一定要注意投入和产出。首先要看这些钱是否比较值钱。大数据培训机构能为我们提供什么帮助,我们能得到什么?例如,它可以为我们提供一个良好的学习环境,在学习过程中督促学习,提高学习效率,为我们提供答疑和教学,制定一套合适的学习计划。

3. 培训后是否能找到合适的工作

最重要的是参加大数据培训后是否能找到合适的工作,即培训后是否能学到满足企业需要的大数据技术知识。

在我们考虑了以上几点之后,我相信您已经对大数据是自学还是培训有了一定的了解。如果你还不明白,可以请教尚硅谷老师。

2020大数据学习路线图:

springboot分库分表方案 springboot联表查询 springboot生产环境部署

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。