2016 - 2024

感恩一路有你

随机森林为什么比决策树好 深度神经网络是否夸张地过拟合了?

浏览量:2242 时间:2021-03-17 03:27:22 作者:admin

深度神经网络是否夸张地过拟合了?

这不可能是一样的。

1. 过度装配可分为许多情况。一是现在的情况太多了。这种神经网络能对许多情况给出正确的答案。即使它是过度安装,你也无法证明它。此外,即使它能工作和排气,也没有坏处。

2. 是否过拟合与我们的神经网络模型和训练集有关。当二者的组合过拟合时,它在训练集上运行良好,在验证集上也会出现问题。现在有一些方法可以对训练集的数据进行预处理、多次输入和多次训练。

3. 目前,过度拟合的问题是不可避免的。培训本身就是一种适应过程。如果未来在数学原理或应用这方面有质的突破,可能有解决的机会。

机器学习算法工程师面试需要做那些准备?

1. 工业中的大型模型基本上都是logistic区域和线性区域,因此SGD和lbfgs的理解是非常重要的,并行推导对于理解LR是如何并行的是非常重要的

2。其次,常用的机器学习算法,如SVM、gbdt、KNN等,应该了解其原理,能够在压力下快速响应。算法的优缺点和适应场景应该基本清楚

3基本算法数据结构应该熟练,链表二叉树,快速行合并,动态返回等

以上是我经常使用的一些短期指标。朋友一定要记住,这三个指标一定是短线行情和主题行情。

随机森林为什么比决策树好 解决过拟合的方法 什么是过拟合现象

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。