pytorch实现二分类 人工智能该如何学起?
人工智能该如何学起?
首先要看基础,比如数学、软件、算法、建筑学、心理学、自动化、脑科学、统计学等等。
其次,要看你想解决哪些问题,比如视觉识别、自动驾驶、天气预报、语音语义学、定量金融、图像处理、金融分析等,每个领域的要求都不一样。例如,那些做医学碰撞诊断的人需要学习一些影像学知识。
需要找一位有学问的专业老师,如果自学,就必须进入专业交流圈。
人工智能是一定要学习python吗?还会用到哪些语言?
作为多年的实践者,我想说的是,Python和人工智能是两个完全不同的概念。Python只是一种编程语言,而人工智能是一种科学方法,主要研究如何通过计算机实现与人类智能相似的设备或程序。python作为一种计算机编程语言,可以作为实现人工智能的编程工具,但它并不是唯一的选择。
首先简单介绍一下人工智能的实现方法。目前,主要有两所学校。
一个是基于神经网络的机器学习,也就是说,近年来,随着谷歌的阿尔法狗获得世界围棋冠军,它又流行起来了(之所以再次被使用,是因为它流行了一段时间,后来遇到技术瓶颈时就沉寂了)。为了促进人工智能的发展,Google开源的tensorflow库受到了广大研究人员的青睐,它可以极大地促进人工神经网络的开发和实验。python作为tensorflow的编程语言,自然成为研究人员必不可少的工具。此外,Facebook的开源项目pytorch也是一个优秀的机器学习库。它还使用Python作为开发语言,为Python添加了许多用户。实际上,也有很多语言可以用于人工智能开发,比如MATLAB和C/C,它们也被广泛使用,但是编程过程会稍微复杂一些。
另一种实现人工智能的方法是基于演绎逻辑的推理方法。曾经流行的专家系统正是基于这一技术,正是因为近年来,深度学习蓬勃发展,其辉煌被掩盖。在这种人工智能实现模式中使用的编程语言是LISP和Prolog。
另外,我想提醒你,如果你想学习人工智能,仅仅能够编程是不够的。它需要一个坚实的数学基础,从线性代数,概率过程,到微积分,甚至张量分析。有了这些基础知识,就可以理解和改进各种学习算法。至于你的算法是用什么语言实现的,就简单多了。当然,Python是一个不错的选择。它比其他语言更简单、更容易学。关键是要有强大的图书馆支持。
pytorch实现二分类 pytorch的应用举例 掌握pytorch能干什么
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。