opencv物体追踪和定位 OpenCV已经将图像处理(识别)的算法写成函数了,那我们还有必要去学习这些算法吗?
OpenCV已经将图像处理(识别)的算法写成函数了,那我们还有必要去学习这些算法吗?
这取决于你的目的。比如说现在的车这么先进好用,你还需要了解变速箱的原理吗?这取决于你的目的。如果只是普通驾驶,你不需要知道。如果你是一个机械师,你必须理解。如果你是一个汽车制造商的工程师,你必须对它非常了解。简言之,这取决于具体的需要。
您所知道的关于人工智能AI的知识有哪些?分享一下?
作为一名it从业者和教育家,让我来回答这个问题。
首先,人工智能的知识体系非常庞大。从目前的研究方向来看,可以分为六大研究领域:计算机视觉、自然语言处理、知识表示、自动推理、机器学习和机器人学。这些不同的领域也有许多细分的研究方向。
从学科体系来看,人工智能是一门非常典型的交叉学科,涉及数学、计算机、控制科学、经济学、神经科学、语言学、哲学等多个学科,因此人工智能领域的人才培养一直比较困难,而不是一门学科不仅知识量比较大,而且难度也比较高。由于人工智能领域的许多研发方向还处于发展初期,有大量的课题需要攻关,因此在人工智能领域聚集了大量的创新人才。
从目前人工智能技术的落地应用来看,在计算机视觉和自然语言处理两个方向出现了很多落地案例。随着大型科技公司纷纷推出自己的人工智能平台,基于这些人工智能平台,可以与行业产生更多的组合,为人工智能技术在行业中的应用奠定基础,同时进行研究和开发。人工智能的门槛大大降低。
从行业发展趋势来看,未来很多领域需要与人工智能技术相结合。智能化也是当前产业结构升级的重要要求之一。在工业互联网快速发展的推动下,大数据、云计算、物联网等技术的落地应用,也将为人工智能技术的发展和应用奠定基础。目前,应用人工智能技术的行业主要集中在it(互联网)、装备制造、金融、医疗等领域。未来,将有更多的产业与人工智能技术相结合。
opencv物体追踪和定位 opencv目标跟踪算法 opencv图像识别算法
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。