2016 - 2024

感恩一路有你

2×2矩阵的维数是多少 怎么判断矩阵是几维的

浏览量:3934 时间:2021-03-15 11:18:08 作者:admin

维数是线性空间的性质。空间的维数是指包含在其基中的向量的个数。矩阵不能形成线性空间,也不能讨论维数。在数学中,对矩阵的维数有不同的看法。矩阵的维数没有定义。只有线性空间具有维数,所以有两种解释:1。矩阵的维数是由其行向量(或列向量)生成的向量空间的维数。它指的是行和列的数量(程序员喜欢这样定义,因为他们关心数组的大小)。你说的矩阵的秩实际上是第一种,也就是说矩阵的维数就是矩阵的秩。如果我们了解矩阵的秩,我们就知道矩阵的维数是多少。矩阵的秩是矩阵中非零子表达式的最高阶。简言之,它是矩阵经过初等行变换后的非零行数。例如,在对一个3*5矩阵进行初等行变换后,最后形成一个阶梯型矩阵,如┌11103│00230│└00000┘,可以通过计算非零行数来知道矩阵的秩。显然,在第一行和第二行中有两个非零行,因此秩r=2,即原始矩阵的维数为2。

怎么判断矩阵是几维的 矩阵的秩和维数的区别 矩阵的求法

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。