医学roc曲线下面积意义 如何用medcalc求roc曲线的最佳截断点及灵敏度特异度?
如何用medcalc求roc曲线的最佳截断点及灵敏度特异度?
1、ROC的分析步骤:
①ROC曲线绘制。依据专业知识,对疾病组和参照组测定结果进行分析,确定测定值的上下限、组距以及截断点(cut-off point),按选择的组距间隔列出累积频数分布表,分别计算出所有截断点的敏感性、特异性和假阳性率(1-特异性)。以敏感性为纵坐标代表真阳性率,(1-特异性)为横坐标代表假阳性率,作图绘成ROC曲线。
②ROC曲线评价统计量计算。ROC曲线下的面积值在1.0和0.5之间。在AUC>0.5的情况下,AUC越接近于1,说明诊断效果越好。AUC在 0.5~0.7时有较低准确性,AUC在0.7~0.9时有一定准确性,AUC在0.9以上时有较高准确性。AUC=0.5时,说明诊断方法完全不起作用,无诊断价值。AUC
③两种诊断方法的统计学比较。两种诊断方法的比较时,根据不同的试验设计可采用以下两种方法:①当两种诊断方法分别在不同受试者身上进行时,采用成组比较法。②如果两种诊断方法在同一受试者身上进行时,采用配对比较法。
2、受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。接受者操作特性曲线就是以虚报概率为横轴,击中概率为纵轴所组成的坐标图,和被试在特定刺激条件下由于采用不同的判断标准得出的不同结果画出的曲线。
roc曲线AUC比较怎么计算?
详细解释如下: 随机抽取一个样本, 对应每一潜在可能值X都对应有一个抽中的概率P。按概率从高到矮排个降序, 对于正样本中概率最高的,排序为rank_1, 比它概率小的有M-1个正样本(M为正样本个数), (rank_1 - M) 个负样本。正样本概率第二高的, 排序为rank_2, 比它概率小的有M-2个正样本,(rank_2 - M 1) 个 负样本。以此类推正样本中概率最小的, 排序为rank_M,比它概率小的有0个正样本,rank_M - 1 个负样本。总共有MxN个正负样本对(N为负样本个数)。把所有比较中 正样本概率大于负样本概率 的例子都算上, 得到公式(rank_1 - M rank_2 - M 1 .... rank_M - 1) / (MxN) 就是正样本概率大于负样本概率的可能性了。
医学roc曲线下面积意义 roc曲线绘制 roc曲线下面积怎么计算
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。