2016 - 2024

感恩一路有你

Python和pytorch关系 Keras还是TensorFlow,程序员该如何选择深度学习框架?

浏览量:3140 时间:2021-03-14 20:08:12 作者:admin

Keras还是TensorFlow,程序员该如何选择深度学习框架?

如果您想用少量的代码尽快地构建和测试神经网络,keras是最快的,而且sequential API和model非常强大。而且keras的设计非常人性化。以数据输入和输出为例,与keras的简单操作相比,tensorflow编译码的构造过程非常复杂(尤其对于初学者来说,大量的记忆过程非常痛苦)。此外,keras将模块化作为设计原则之一,用户可以根据自己的需求进行组合。如果你只是想快速建立通用模型来实现你的想法,keras可以是第一选择。

但是,包装后,keras将变得非常不灵活,其速度相对较慢。如果高度包装,上述缺点将更加明显。除了一些对速度要求较低的工业应用外,由于tensorflow的速度较高,因此会选择tensorflow

如果您在验证您的想法时,想定义损失函数而不是使用现有的设置,与keras相比,tensorflow提供了更大的个性空间。此外,对神经网络的控制程度将在很大程度上决定对网络的理解和优化,而keras提供的权限很少。相反,tensorflow提供了更多的控制权,比如是否训练其中一个变量、操作梯度(以获得训练进度)等等。

尽管它们都提供了深度学习模型通常需要的功能,但如果用户仍然追求一些高阶功能选择,例如研究特殊类型的模型,则需要tensorflow。例如,如果您想加快计算速度,可以使用tensorflow的thread函数来实现与多个线程的相同会话。此外,它还提供了调试器功能,有助于推断错误和加快操作速度。

pytorch模型如何转成torch7模型?

将torch 7模型转换为torch模型和震源。GitHub地址clarwin/convert torch to上面的代码将创建两个文件并

示例:

verify

表中的所有模型都可以转换,并且结果已经过验证。

网络下载地址:alexnetcnn benchmarks perception-v1cnn-benchmarks vgg-16cnn-benchmarks vgg-19cnn-benchmarks resnet-18cnn-benchmarks resnet-200cnn-benchmarks resnext-50(32x4d)resnext-101(32x4d)resnext-101(64x4d)resnextdensennet-264(k=32)densenetensenet-264(k=48)densenet

深度学习是一种新的学习模式并随着近年来信息社会的发展、学习科学和课程改革而形成。

目前,对深度学习的概念有很多答案,很多专家学者的解释是本质意义一致的表述略有不同。

李嘉厚教授认为,深度学习是建立在理解的基础上的。学习者可以批判性地学习新的想法和事实,将它们融入原有的认知结构,将许多想法联系起来,并将现有的知识转移到新的情境中,从而做出决策和解决问题。

郭华教授认为,深度学习是在教师指导下的一个有意义的学习过程,学生围绕挑战性的学习主题,全心投入,体验成功,获得发展。它具有批判性理解、有机整合、建设性反思和迁移应用的特点。

深度学习有几个特点。一是触动人心的学习。第二,体验式学习。三是深入认识和实践创新的研究。

深度学习是什么意思?

学习是一个漫长的过程,遇到困难停不下来,语言执着,那人的学习方法不一样,有的人喜欢看视频,有的人喜欢看书,B站,CSDN,智湖等等,有很多教学视频,可以参考学习,小编学习python,都是直接作战,自己做项目,在项目中遇到问题,去百度,或者谷歌,把这些问题解决后,推荐自己的学习解决方案也录下来,发到网上,让自己也学习,为别人也铺路,关于python,小编也写了很多文章,大家可以参考学习

先说说Python的缺点。python自发布以来,在学术界实际生产中的应用比工业界多,主要原因是它不够成熟,很多接口不稳定,综合性不够。Tensorflow仍有许多Python不支持的功能,如快速傅立叶变换,但随着Python的发展,这一缺点将逐渐减少。另外,与tensorflow的静态图相比,tensorflow的静态图很容易部署到任何地方(这比许多框架都要好得多),Python的深度学习框架比Python更先进,部署到其他产品上会非常不方便。

优势从一开始就有。尽管tensorflow自2015年发布以来受到了许多方面的青睐,比如theano,但tensorflow使用的是静态计算图。对于新手来说,有太多的新概念需要学习。因此,无论如何开始或构建,使用tensorflow都比python更困难。2017年,Python被团队开放源码的一个主要原因是更容易构建深度学习模型,这使得Python发展非常迅速。在数据加载方面,Python用于加载数据的API简单高效。它的面向对象API来自于porch(这也是keras的设计起源),它比tensorflow的困难API友好得多。用户可以专注于实现自己的想法,而不是被框架本身所束缚。

在速度方面,python不会为了灵活性而放弃速度。虽然运行速度与程序员的水平密切相关,但在相同的情况下,它可能比其他框架更好。另外,如果追求自定义扩展,python也会是首选,因为虽然两者的构造和绑定有一些相似之处,但tensorflow在扩展中需要大量的模板代码,而只有接口和实现是python编写的。

pyhton怎么自学,效率才会高?自学了几天,感觉还是懵懵的?

人工智能是一门非常流行的科学,缩写为AI。它被认为是21世纪的三大尖端技术之一。另外两项技术是基因工程和纳米科学。研究和开发模拟、扩展和扩展人类智能的理论、方法、技术和应用系统是一门新兴的技术科学。人工智能是计算机科学的一个分支。它的目的是理解智能的本质,制造出一种能以类似人类智能的方式做出反应的新型智能机器。该领域的研究内容包括机器人、语言识别、图像识别、自然语言处理和专家系统。

人工智能是一门使计算机模拟人类某些思维过程和智能行为(如学习、推理、思考、计划等)的学科,主要包括用计算机实现智能的原理,使计算机与人脑智能相似,使计算机实现更高层次的智能应用程序。人工智能将涉及计算机科学、心理学、哲学和语言学。可以说,几乎所有的自然科学和社会科学学科都已经远远超出了计算机科学的范畴。如今,热腾腾的大数据和阿尔法围棋大战对李世石的背后,有着人工智能的影子。

学习人工智能主要包括概率论、数理统计、矩阵论、图论、随机过程、最优化、神经网络、贝叶斯理论、支持向量机、粗糙集、经典逻辑、非经典逻辑、认知心理学,以及微积分、线性代数等编程工具,如MATLAB、SPSS、C或Java。

面对Tensorflow,为何我选择PyTorch?

事实上,这是由于Python的语言特性。当你学习咕噜,你会发现它很热。因为学生太少,需要帮助的企业也很多,现在还很早。不过,我加入了python,但我也可以学习golang。学习时间很短。

Python和pytorch关系 keras转pytorch pytorch转tensorrt

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。