2016 - 2024

感恩一路有你

五对角矩阵压缩存储公式 稀疏矩阵压缩存储的基本思想是什么?

浏览量:2211 时间:2021-03-14 13:02:22 作者:admin

稀疏矩阵压缩存储的基本思想是什么?

对稀疏矩阵压缩存储的目的是:C节省存储空间和D降低预算时间复杂度,如果是单选题,那么应该选C节省存储空间。矩阵中非零元素的个数远远小于矩阵元素的总数,并且非零元素的分布没有规律,则称该矩阵为稀疏矩阵(sparsematrix);与之相区别的是,如果非零元素的分布存在规律(如上三角矩阵、下三角矩阵、对角矩阵),则称该矩阵为特殊矩阵。稀疏矩阵的计算速度更快,因为MATLAB只对非零元素进行操作,这是稀疏矩阵的一个突出的优点.假设矩阵A,B中的矩阵一样.计算2*A需要一百万次的浮点运算,而计算2*B只需要2000次浮点运算.因为MATLAB不能自动创建稀疏矩阵,所以要用特殊的命令来得到稀疏矩阵.对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节.但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费.为了节省存储空间,可以只存储其中的非0元素.

什么是压缩矩阵?

二维数组在形式上是矩阵,因此一般用二维数组来存储矩阵。在不压缩存储的情况下,矩阵采用按行优先或按列优先方式存储,占用的存储单元数等于矩阵的元素个数。在实际应用中,经常出现一些阶数很高的矩阵,同时在矩阵中非零元素呈某种规律分布或者矩阵中有大量的零元素,若仍然用常规方法存储,可能存储重复的非零元素或零元素,这将造成存储空间的大量浪费。因此对这类矩阵进行压缩存储,从而合理地利用存储空间。为了节省存储空间,可以利用特殊矩阵的规律,对它们进行压缩存储,也就是说为多个值相同的元素只分配一个存储单元,对零元素不分配空间。适合压缩存储的矩阵一般是值相同的元素或者零元素在矩阵中分布有一定规律的特殊矩阵和稀疏矩阵。常见的特殊矩阵有对称矩阵、三角矩阵和对角矩阵。

五对角矩阵压缩存储公式 三对角矩阵的压缩存储公式 对角矩阵压缩存储公式

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。