2016 - 2024

感恩一路有你

显式方程和隐式的区别 abaqus中何为显式,隐式分析?

浏览量:2968 时间:2021-03-14 05:47:58 作者:admin

在隐式分析中,采用牛顿-拉夫逊算法求解平衡方程。在显式分析中,采用动力法求解运动方程,采用中心差分法对运动方程进行积分。一般来说,隐式方法精度较高,但只能计算准静态问题,有时收敛困难;显示分析中不存在收敛问题,但结果与加载速度有关,应根据分析问题选择。

abaqus中何为显式,隐式分析?

显式算法基于动力学方程,无需迭代;静态隐式算法基于虚功原理,一般需要迭代计算。

显式算法最大的优点是稳定性好。

动力显式算法采用了一些动力方程的差分格式(如广泛应用的中心差分法、线加速度法、纽马克法、威尔逊法等),不需要直接求解切线刚度,不需要进行平衡迭代,计算速度快。只要时间步长足够小,一般不存在收敛问题。因此,它比隐式算法需要更少的内存。而且数值计算过程可以方便地进行并行计算,编程相对简单。而显式算法要求质量矩阵为对角矩阵,只有在单元级计算量尽可能少的情况下才能发挥速度优势。因此,常采用约化积分法,容易产生沙漏模态,影响应力应变的计算精度。静态显式方法基于平衡方程的速率形式和欧拉正差分法,不需要迭代求解。由于平衡方程只以速率形式满足,结果会慢慢偏离正确值。为了减小相关误差,每一步都必须使用一个小的增量。

2. 隐式

在隐式算法中,静态平衡方程需要在每一步增量中迭代求解,每次迭代都需要求解大型线性方程组,这需要相当大的计算资源、磁盘空间和内存。该算法的增量步长可以较大,至少比显式算法的增量步长要大得多,但实际操作受迭代次数和非线性程度的限制,需要一个合理的值。

显式方程和隐式的区别 隐式差分和显式差分的区别 隐式解和显式解的区别

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。