2016 - 2024

感恩一路有你

keras框架怎么读 Keras还是TensorFlow,程序员该如何选择深度学习框架?

浏览量:1305 时间:2021-03-14 05:12:31 作者:admin

Keras还是TensorFlow,程序员该如何选择深度学习框架?

如果您想用少量的代码尽快地构建和测试神经网络,keras是最快的,而且sequential API和model非常强大。而且keras的设计非常人性化。以数据输入和输出为例,与keras的简单操作相比,tensorflow编译码的构造过程非常复杂(尤其对于初学者来说,大量的记忆过程非常痛苦)。此外,keras将模块化作为设计原则之一,用户可以根据自己的需求进行组合。如果你只是想快速建立通用模型来实现你的想法,keras可以是第一选择。

但是,包装后,keras将变得非常不灵活,其速度相对较慢。如果高度包装,上述缺点将更加明显。除了一些对速度要求较低的工业应用外,由于tensorflow的速度较高,因此会选择tensorflow

如果您在验证您的想法时,想定义损失函数而不是使用现有的设置,与keras相比,tensorflow提供了更大的个性空间。此外,对神经网络的控制程度将在很大程度上决定对网络的理解和优化,而keras提供的权限很少。相反,tensorflow提供了更多的控制权,比如是否训练其中一个变量、操作梯度(以获得训练进度)等等。

尽管它们都提供了深度学习模型通常需要的功能,但如果用户仍然追求一些高阶功能选择,例如研究特殊类型的模型,则需要tensorflow。例如,如果您想加快计算速度,可以使用tensorflow的thread函数来实现与多个线程的相同会话。此外,它还提供了调试器功能,有助于推断错误和加快操作速度。

全概率和贝叶斯的区别?

1. 总概率公式:首先,建立一个完整的事件组。事实上,总概率就是在第一阶段已知的情况下找到第二阶段。例如,第一阶段分为三种类型:A、B和C。然后,在A、B和C中,出现D的概率。最后,求出D的概率

P(D)=P(a)*P(D/a)P(b)*P(D/b)P(c)*P(D/c)。贝叶斯公式应称为逆概率公式,只是为了纪念贝叶斯的名字。基于对全概率公式的理解,贝叶斯实际上被称为第二阶段,第一阶段,关键是用条件概率公式来做一个大的转变,遵循上面建立的a B C就像D模型一样,如果P(D)已知,我们就可以求出D在一次发生下的概率,这就是贝叶斯

如果你是一个面试者,怎么判断一个面试官的机器学习水平?

keras框架怎么读 keras神经网络自动调参 keras二分类

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。