2016 - 2024

感恩一路有你

梯度稀释的原因 深度学习最终会淘汰掉其他所有机器学习算法吗?

浏览量:2821 时间:2021-03-14 04:46:30 作者:admin

深度学习最终会淘汰掉其他所有机器学习算法吗?

谢谢。我可以确切地说,不!也许首先,为什么深度学习被称为“深度”?从当前技术的角度来看,深度学习结合底层特征,形成更抽象的属性类别或特征的高层表示,从而发现数据的分布式特征表示。

深度学习属于前者,它有很多参数需要调整,是一个非常大的参数模型。一般的机器学习模型属于后者,它需要强大的特征来分离数据,最终得到不同的类别。

一般来说,目前深度学习确实有很多优势。例如,对我来说,这是非常简单和暴力的。它不需要很长时间来调整参数,清理数据,并把它扔进去看看结果。如果不好,调整参数继续尝试。一般的机器学习模型不是这样的。它需要大量的特征工程。但是,深度学习有一个问题,到目前为止还没有解决的工程。它是一个可解释性差的“黑匣子”,导致系统出现错误,无法快速找出原因或追溯以前的错误。所以在工程中,我们实际上更喜欢特征少的工程和解释性强的模型来获得更好的结果。我们期待着深学在未来科学技术的进一步发展。

我将在这里发表所有关于算法、机器学习和深度学习的有趣文章。

编写代码不容易。如果这篇文章对你有帮助,请喜欢

梯度稀释的原因 梯度下降法原理和步骤 梯度下降算法过程详细解读

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。