2016 - 2024

感恩一路有你

cuda处理器 为什么CPU主频比FPGA快那么多,但是却说FPGA可以加速?

浏览量:1441 时间:2021-03-13 21:36:19 作者:admin

为什么CPU主频比FPGA快那么多,但是却说FPGA可以加速?

首先,FPGA这个词因为人工智能的炒作而为公众所熟知,但也被误解了。FPGA全称是现场可编程门阵列,它可以做很多事情,有很多种。近年来,加速技术是指用FPGA进行深度学习或图形处理。GPU和GPU之间的区别可以被非专业人士理解为GPU是一种更加集成和定制的FPGA。事实上,GPU和ISP公司通常在芯片带出之前对FPGA进行流式处理。它的硬件可编程性和低成本使其在研发阶段发挥了重要作用。

说到加速,它是关于并发性和顺序的。FPGA和CPU处理不同的事情。CPU运行一个程序。程序之所以被称为程序,是因为它有一个顺序问题:先做什么,然后做什么。不管有多少层次的流水线,多少CPU内核,多少线程,基准都是不能打乱指令的执行顺序的。用于深度学习的FPGA可以这样理解。你有一张256x256像素的彩色图片。FPGA是一块256x256像素的纯红色玻璃板。你把画贴在玻璃板上,透过玻璃板看。你只看到红色。这个过程是并行的。你只需要做一个动作,那就是把画贴在木板上。所有的要点都变了。没有顺序。可以同时处理这些点。这种任务可以是并发的。如果这个问题是由CPU来处理的,那么无论程序是如何编写的,您总是必须遍历每个点。时间复杂度是O(1)和O(256x256)之间的差。适用场景不同,无法比较。

如何写出比MATLAB更快的矩阵运算程序?

如果禁用了MATLAB,则只能使用Python。

Python优于Matlab的优点:1。通用编程语言,除了科学计算之外,它还可以做很多其他的事情,比如web。2字符串运算比MATLAB更方便。请注意,即使是科学研究也常常是在弦上进行的。典型的结果是,许多人开始放弃Perl,转而使用Python进行生物信息学分析,而MATLAB尽管有其生物信息学工具箱,却毫无用处。对不起,我不知道你要从事哪个领域的科学研究。此示例可能不适用于您3。免费的。如果你不花很多钱去买盗版的MATLAB,你在发送文章时应该小心。但是Python没有这个问题。MATLAB相对于Python的优势:1。矩阵运算非常方便。我没有发现任何语言运算矩阵比MATLAB更好,Python numpy也不是。2运行程序后,可以在工作区中查看结果,以便于进一步观察。但是Python似乎可以通过特殊的包来实现这一点。我从没试过,但我不知道。三。在某些特定领域,matlab工具箱更可靠。毕竟,敢卖这么贵,没有干货是不够的。许多Python包的源代码非常复杂,比如numpy当然是值得信赖的,但是很难说您是否可以在Internet上下载包。

CUDA运算速度和显卡CUDA核心数量关系大吗?

(对于专业图形卡,不讨论游戏卡,因为科学计算能力被阉割了。)CUDA内核(即流处理器)的数量直接影响CUDA计算的速度。

数字越多,相同频率下的计算能力越好。当然,如果频率和芯数相同,频率越高,计算速度越快。对计算速度的间接影响是架构,即执行效率。

cuda处理器 cpu和gpu训练模型速度 cuda处理器数

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。