2016 - 2024

感恩一路有你

opencv做人脸识别 您所知道的关于人工智能AI的知识有哪些?分享一下?

浏览量:2617 时间:2021-03-13 20:33:00 作者:admin

您所知道的关于人工智能AI的知识有哪些?分享一下?

作为一名it从业者和教育家,让我来回答这个问题。

首先,人工智能的知识体系非常庞大。从目前的研究方向来看,可以分为六大研究领域:计算机视觉、自然语言处理、知识表示、自动推理、机器学习和机器人学。这些不同的领域也有许多细分的研究方向。

从学科体系来看,人工智能是一门非常典型的交叉学科,涉及数学、计算机、控制科学、经济学、神经科学、语言学、哲学等多个学科,因此人工智能领域的人才培养一直比较困难,而不是一门学科不仅知识量比较大,而且难度也比较高。由于人工智能领域的许多研发方向还处于发展初期,有大量的课题需要攻关,因此在人工智能领域聚集了大量的创新人才。

从目前人工智能技术的落地应用来看,在计算机视觉和自然语言处理两个方向出现了很多落地案例。随着大型科技公司纷纷推出自己的人工智能平台,基于这些人工智能平台,可以与行业产生更多的组合,为人工智能技术在行业中的应用奠定基础,同时进行研究和开发。人工智能的门槛大大降低。

从行业发展趋势来看,未来很多领域需要与人工智能技术相结合。智能化也是当前产业结构升级的重要要求之一。在工业互联网快速发展的推动下,大数据、云计算、物联网等技术的落地应用,也将为人工智能技术的发展和应用奠定基础。目前,应用人工智能技术的行业主要集中在it(互联网)、装备制造、金融、医疗等领域。未来,将有更多的产业与人工智能技术相结合。

python用opencv做的人脸识别占用性能严重,怎么优化?

关于您的问题的描述性信息太少。无法给出具体答案。你只能给出一个大概的想法。

Python虽然易学易用,但效率不高,所以一般适合实验性代码开发,可以快速验证思想或算法的正确性。例如,在谈到人脸识别时,无论是使用深度学习算法还是传统算法,都应该首先设计一个算法,验证它是否能正常工作。只有能够正确检测出人脸的算法才是可行的算法。至于效率,这是下一个优化目标。

一般来说,图像处理的计算量比较大,在验证了算法的正确性后,通常会将Python代码移植到更高效的C/C平台上,特别是对于opencv,因为opencv的开发语言是C,至于如何用C调用Python模型,请参考我写的一篇文章,也是关于图像处理的。

此外,对于计算量较大的任务,如深度学习,CPU往往难以满足计算要求,因此需要GPU加速。

opencv做人脸识别 opencv人脸识别原理 opencv有效区域分割

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。