2016 - 2024

感恩一路有你

高中数学求零点的方法 函数零点的判定定理?

浏览量:2066 时间:2021-03-13 17:32:11 作者:admin

函数零点的判定定理?

1. 一般来说,如果区间[a,b]中函数y=f(x)的图是连续曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)中有一个零,即存在C∈(a,b),使得f(C)=O,这是f(x)=0的根,可以确定f(x)在(a,b)中有零,但是零不一定是唯一的。

](2)不是所有的零都可以由这个定理来确定。也可以说它不满足这个定理的条件,这并不意味着函数在(a,b)中没有零,例如函数f(x)=x2-3x2。F(0)·F(3)>0,但函数F(x)在区间(0,3)中有两个零。

(3)如果F(x)在[a,b]上的图像是连续单调的,则F(a)。F(b)<0,那么F(x)在(a,b)上有唯一的零。

2。如何判断函数的零点个数:

(1)几何法:对于不能用根公式的方程,我们可以把它与函数y=f(x)的图像联系起来,利用函数的性质找出零点。

特别提醒:①虽然“方程的根”和“函数的零点”密切相关,但不能混淆。例如,方程x2-2x 1=0在[0,2]上有两个等根,而函数f(x)=x2-2x 1在[0,2]上只有一个零点;

2函数的零点是实数,而不是数轴上的点。

什么是函数零点?

函数零点

x,需要注意的是,零点是一个数值,而不是一个点,是函数与X轴交点的横坐标。

函数零点的求法?

高中数学求零点的方法 函数零点个数的求法 怎么求函数零点

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。