2016 - 2024

感恩一路有你

怎么判断哪个是更高阶无穷小 什么叫高阶无穷小量和低阶无穷小量?

浏览量:6175 时间:2021-03-13 07:48:07 作者:admin

什么叫高阶无穷小量和低阶无穷小量?

定义:如果limx→x0f(x)/g(x)=0,则f称为g的高阶无穷小,或g称为f的低阶无穷小。应该注意的是,这两个概念是相对的。我们不能说某个量是高阶无穷小或低阶无穷小。我们应该说,某个量是某个量的高阶无穷小或低阶无穷小。这个定义与极限知识有关。你需要解释你的变量往往与某个数或无穷大有关。这就是条件。也就是说,在什么条件下,谁是谁的上级或下级。如果你知道极限,就很容易理解。例如:当x→0时,x,x平方,x立方是无穷小,后者是前者的高阶无穷小,或前者是后者的低阶无穷小。再举一个例子,当α→0时,(1-cosα)/sinα=0,那么当α→0时,1-cosα是sinα的高阶无穷小,或者sinα是1-cosα的低阶无穷小。看。。。

请详细说出什么是高阶无穷小?什么是低阶无穷小?什么是同阶非等价无穷小?

当Lim a=0时,

如果Lim B/a=0,则称B为比a高阶的无穷小,表示为B=O(a)

如果Lim B/a=无穷大,则称B为比a低阶的无穷小;

高数什么叫高阶无穷小?

A:无穷小是一个极限为零的变量。确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)无限接近零,即f(x)=0(或f(x)=0),则当x→x0(或x→∞)时称f(x)为无穷小。例如,当x→1时,f(x)=(x-1)2是无穷小;当N→∞时,f(1/N)=是无穷小;当x→0时,f(x)=SiNx是无穷小。特别是,我们不能把非常小的数字和无穷小混淆起来。这里值得一提的是,无穷小是可以比较的:假设a和B是LIM的无穷小,如果LIM B/a=0,那么B是比a高阶的无穷小,表示为B=O(a),例如B=1/x^2,a=1/x,当x->为无穷大时,一般来说,B趋于零的速度比a快,所以称为高阶B。如果C=1/x^10,那么C的阶数比a和B高,因为C趋于零的速度更快。另外,如果a和B是无穷小,那么a=bo(B)或B=ao(a)

高阶无穷小的定义或者概念是什么?

如果有两个无穷小a和B,如果a/B=无穷小,那么a称为B的高阶无穷小。例如,当~~ x趋于0时,x和x^2趋于0,即无穷小,但x^2/x=x=无穷小,所以x^2被称为x的高阶无穷小,也可以理解为~~ x^2比x的阶(指数)高

x-->0,x是一阶无穷小,x^2是x-->0的二阶无穷小,那么x^3是x-->0的三阶无穷小。人们常说[x-a是x→a时的基本无穷小],[1/x是x→∞时的基本无穷小]当x→a时,一般来说,“无穷小f(x)是k阶无穷小”应理解为“对于基本无穷小x-a”。无穷小是数学分析中的一个概念,用于严格定义“最终消失的量”、“绝对值小于任何正数的量”等非正式描述。在古典微积分或数学分析中,无穷小通常以函数和数列的形式出现。

3阶无穷小什么意思?

如果没有高阶无穷小,那么我们就不能加等号

让我给你举个例子,ex equals

1 x/1!X2/2!。。。xn/N!。。。

两边ex的导数是ex等于

0 1 x/1!。。。。XN-1/n-1!Xn/N。。。

发现如果不存在高阶无穷小,那么经过求导后,xn/N就会减少!比以前好多了。如果无穷导数能找到ex等于0的错误结论,那么高阶无穷小是必不可少的。如果没有高阶无穷小,只能说它是近似的,不等于

怎么判断哪个是更高阶无穷小 高阶无穷小怎么理解 同阶无穷小定义

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。