深度神经网络原理 如何理解深度学习和人工神经网络?二者有哪些联系?
浏览量:1708
时间:2021-03-13 03:29:54
作者:admin
如何理解深度学习和人工神经网络?二者有哪些联系?
事实上,有几个混淆的概念:人工智能、机器学习、神经网络、深度学习。人工智能是一个大方向和愿景。它提出了许多有待解决的问题,如机器视觉、自然语言处理、机器学习、神经网络、数据挖掘、大脑模拟、人工生命等
2机器学习和神经网络是人工智能领域有待解决的问题和实现的方向
3。深度学习是利用神经网络算法进行机器学习来解决人工智能相关问题的方法/算法之一
4神经网络是分层的,一层和两层称为感知器和多层感知器,三层或三层以上也称为深度学习。
深度学习和普通的机器学习有什么区别?
一张图片显示了这种关系。机器学习是人工智能的重要领域之一,而深度学习是机器学习的一个分支。深度学习之所以近年来流行起来,是因为它突破了传统机器学习无法解决的一些问题。
机器学习的意义在于代替人工完成重复性工作,识别出统一的规则(模式)。但是对于传统的机器学习来说,特征提取的难度不小(特征可以是像素、位置、方向等)。特征的准确性将在很大程度上决定大多数机器学习算法的性能。为了使特征准确,在特征工程部分需要大量的人力来调整和改进特征。完成这一系列工作的前提是,数据集中所包含的信息量是充分的,并且易于识别。如果不满足这一前提,传统的机器学习算法将在信息的杂乱中失去其性能。深度学习的应用正是基于这个问题。它的深层神经网络使它能够在杂波中学习,自动发现与任务相关的特征(可以看作是自发学习的特征工程),并提取高级特征,从而大大减少了特征工程部分任务所花费的时间。
另一个明显的区别是他们对数据集大小的偏好。传统的机器学习在处理规则完备的小规模数据时表现出良好的性能,而深度学习则表现不好。随着数据集规模的不断扩大,深度学习的效果会逐渐显现出来,并变得越来越好。对比如下图所示。
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。