拉格朗日插值法例题matlab 拉格朗日插值法的一般形式运用方法?
拉格朗日插值法的一般形式运用方法?
在数值分析中,拉格朗日插值是以18世纪法国数学家约瑟夫·拉格朗日的名字命名的多项式插值方法。在许多实际问题中,函数是用来表示一些内在的关系或规律的,但许多函数只能通过实验和观察才能理解。例如,在实际中观测一个物理量时,在几个不同的地方得到相应的观测值。拉格朗日插值法可以得到一个多项式,它只取每个观测点的观测值。这种多项式称为拉格朗日(插值)多项式。在数学上,拉格朗日插值可以给出一个多项式函数,它只经过二维平面上的几个已知点。拉格朗日插值法最早是由英国数学家爱德华·沃林于1779年发现的,然后是利昂哈德·欧拉于1783年发现的。1795年,拉格朗日在《师范数学基础教程》一书中发表了这种插值方法,从此他的名字就与这种方法联系在了一起。一般来说,如果我们知道函数在不同的n1点上的值(即函数通过n1点),我们可以考虑构造一个通过n1点的函数,如果我们要估计任意点ξ,ξ≠Xi,I=0,1,2,…,N,我们可以用PN(ξ)的值作为精确值f(ξ)的近似值。这种方法称为“插值法”。表达式(*)称为包含Xi(I=0,1,…,n)的最小间隔[a,b],其中a=min{x0,x1,…,xn},b=max{x0,x1,…,xn}
拉格朗日插值法例题matlab 二次拉格朗日插值法例题 拉格朗日插值精度
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。