2016 - 2024

感恩一路有你

回归分析数据集在哪找 数据分析到底有多难?

浏览量:1944 时间:2021-03-12 05:01:29 作者:admin

数据分析到底有多难?

根据具体场景,问题相当广泛。无论是站在求职者的角度还是企业管理的角度,前者在技术上问题不大,这是有借鉴意义的。难点在于如何结合业务场景给出分析思路,建立分析系统,几乎没有参考价值。对于企业来说,数据治理通常是最大的问题,成本高且存在不确定因素。尤其是要进行数字化转型的传统企业,还有很长的路要走,坑也不少。

大数据有哪些特点?

大数据是大数据的概念范畴。大数据是指传统软件工具在一定时间内无法捕获、管理和处理的数据集。它是一种海量、高增长率、多样化的信息资产,需要新的处理模式具有更强的决策能力、洞察力和流程优化能力。麦肯锡全球研究所(McKinsey Global Research Institute)给出的定义是:大规模的数据集,在获取、存储、管理和分析方面远远超出了传统数据库软件工具的能力。它具有数据规模大、数据流动快、数据类型多样、价值密度低等特点。

大数据的特点。在维克多·迈尔·勋伯格(Victor Myer Schoenberg)和肯尼斯·库克耶(Kenneth kuckye)笔下的大数据时代,大数据是指用所有数据进行分析和处理,而不是使用随机分析(抽样调查)的捷径。大数据的特征(由IBM提出):体积(大容量)、速度(高速)、多样性(多样性)、价值(低值密度)、准确性(真实性)。

具体来说,体积:数据的大小决定了所考虑数据的价值和潜在信息。多样性:数据类型的多样性。速度:获得数据的速度。可变性:阻碍有效处理和管理数据的过程。准确性:数据的质量。复杂性:数据量大,来源多。价值:合理利用大数据,低成本创造高价值。

从技术角度来看,大数据和云计算之间的关系就像硬币的正反两面一样密不可分。大数据不能由一台计算机处理,因此必须采用分布式体系结构。其特点是对海量数据进行分布式数据挖掘。但它必须依靠云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的到来,大数据越来越受到关注。据分析团队介绍,大数据通常用来描述一个公司创建的大量非结构化数据和半结构化数据,下载到关系数据库进行分析需要花费太多的时间和金钱。大数据分析通常与云计算相关,因为实时大数据集分析需要MapReduce这样的框架将工作分配给数十台、数百台甚至数千台计算机。

大数据需要特殊的技术来有效处理大量数据。适用于大数据的技术包括海量并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展存储系统。

回归分析数据集在哪找 数据集 数据挖掘关联分析案例

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。