2016 - 2024

感恩一路有你

e的近似值等于多少 数学里的e为什么叫做自然底数?

浏览量:2932 时间:2021-03-11 15:06:57 作者:admin

数学里的e为什么叫做自然底数?

如果你有1元,如果年利息是1元,那么你可以在年底收回2元。

根据月回报率,您的月利息是1/12元。如果你要求每月的利息,你可以获得滚动的利润-像余波,那么你能得到的钱年底是12次方(1 1/12)。

如果你变得贪婪,每天都要求支付利息,你就可以获得滚滚的利润——就像雨后春笋一样,那么年底你能拿到的钱是365的(1/365)倍于365的力量。

最后,你认为这是不够的。你每时每刻都要付利息,你就能获得滚滚利润。那么,你能得到的钱是(1 1/N)的N次方,N趋于无穷大。这时,你能得到的钱是e,这是欧拉的自然常数,约为2.718

因此,自然常数e显然与最高的兴趣水平有关。在生活中,它的出现是非常自然和深刻的——因为贪婪是人性的基本方面。

在自然界中,e也无处不在。最重要的存在可以通过数学中的复数运算来实现。

首先,你需要知道demover定理。

假设有两个复数(以三角形式表示),即Z1=R1(COSθ1 isinθ1),Z2=R2(COSθ2 isinθ2),然后它们的乘积:

z1z2=r1r2[COS(θ1θ2)isin(θ1θ2)]。

demover的发现后来由Euler在E中表示,欧拉把所有的三角函数都用E的指数来表示,至于欧拉为什么能这样做,我们需要从微积分泰勒展开的角度来理解。简而言之,许多人认为这个公式是最美的:当x等于π时,结果是-1。

E是一个无限的非循环十进制数,它实际上是一个超越数,但它背后可能还有许多其他的秘密,等待我们去探索。

数学里的e为什么叫做自然底数?

E有时称为自然常数,约为无理数的2.71828182845904523536。

以E为底的对数称为自然对数,自然数也用于数学中。

e的近似值等于多少 宇宙三大常数 高考常考的15种超越函数图像

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。