2016 - 2024

感恩一路有你

tensorflow图片识别实例 机器学习与深度学习有什么异同?

浏览量:1514 时间:2021-03-11 06:37:35 作者:admin

机器学习与深度学习有什么异同?

深度学习和一般机器学习的区别是什么

1:一般机器学习一般指决策树、逻辑回归、支持向量机、xgboost等,深度学习的主要特点是使用深度神经网络:深度卷积网络、深度循环网络,递归网络等。算法在层次上没有相似性。很难说相似性可能是每个人的函数都要拟合的高维函数。 ] ]2:一般机器学习在分析低维和可解释的任务时表现更好。例如,数据挖掘和推荐算法。它们的特点是,总体而言,所收集的数据维数不高。以广告推送任务为例,一般分析的数据维度仅包括性别、年龄、学历、职业等,参数调整方向明确。

3:深度学习算法擅长分析高维数据。例如,图像、声音等。例如,图像可以具有千万像素,相当于千万特征向量维,并且像素之间的关系不是特别明显。在这种情况下,卷积神经网络能够有效地处理这一问题,基本上能够非常准确地掌握图像的特征。但各维度的解释力很弱,参数调整的方向也不明确(神经元个数、隐层个数等)。综上所述,两者其实有很大的不同。近年来,深度学习得到了发展。传统的机器学习算法大多来源于概率论和信息学。在编程方面,传统的机器学习模型基本上集成到sklearn包中。对于深度学习,可以使用tensorflow作为框架。对于传统机器学习的详细理解,可以从李航的统计原理或周志华的机器学习(又称西瓜书)中看到。由于近两年关于深度学习的书籍很少,我们可以参考近两年关于深度学习的论文。当然,它们都需要一个坚实的数学基础,主要是因为这三本书:线性代数或高等代数,高等数学或数学分析,概率论或随机过程

自己的另一半,是想找一个和自己相似的人,还是找一位差异互补性强的人呢?为什么?

悲观,负能量的人在一起,很麻烦!

tensorflow图片识别实例 tensorflow特征图可视化 tensorflow图像分割

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。