神经网络最少要多少数据 用同一数据集训练神经网络,每次训练结果不一样,有时正确率很高,有时很低,为什么?
用同一数据集训练神经网络,每次训练结果不一样,有时正确率很高,有时很低,为什么?
其实这个问题的实质是,如果我们用机器学习算法在数据集上训练一次数据模型,保存模型,然后用同样的算法和同样的数据集和数据排序再训练一遍,第一个模型和第二个模型是一样的吗?
这可能是因为神经网络用增益或权重的随机值初始化,然后每个模拟在训练阶段有不同的起点。如果您希望始终保持相同的初始权重,可以尝试为初始权重修复种子以消除问题。
如果我们深入研究这个问题,我们可以根据ml算法的“确定性”来对其进行分类。当从同一个数据集进行训练时:
一个是总是生成相同的模型,并且记录以相同的顺序呈现;
另一个是总是生成不同的模型,并且记录顺序不同。
在实践中,大多数是“不确定的”。模型变化的原因可能是机器学习算法本身存在随机游走、不同权值的随机初始化、不同分量的概率分布抽样来分配优化函数。
虽然模型的“不确定性”可能会对单个训练结果造成干扰,但我们也可以用“不确定性”来确认模型的稳定性,如决策树、支持向量机(SVM)、神经网络等,最终可以通过多次迭代来确认模型的稳定性。
既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?
这取决于数据量和样本数。不同的样本数和特征数据适合不同的算法。像神经网络这样的深度学习算法需要训练大量的数据集来建立更好的预测模型。许多大型互联网公司更喜欢深度学习算法,因为他们获得的用户数据是数以亿计的海量数据,这更适合于卷积神经网络等深度学习算法。
如果样本数量较少,则更适合使用SVM、决策树和其他机器学习算法。如果你有一个大的数据集,你可以考虑使用卷积神经网络和其他深度学习算法。
以下是一个图表,用于说明根据样本数量和数据集大小选择的任何机器学习算法。
如果你认为它对你有帮助,你可以多表扬,也可以关注它。谢谢您
很小的数据集用深度神经网络跑有没有必要?
这取决于它有多小。
一般来说,如果数据个数n小于特征个数F,则不推荐使用神经网络,支持向量机更好。
最好使用嵌套CV来评估性能。
神经网络是大数据吗?
神经网络不是大数据,神经网络是一种大数据处理方法。
自2016年以来,阿尔法犬以4:1夺得人类围棋冠军,以神经网络为代表的人工智能开始流行。神经网络(现在一般称为人工神经网络),它是一种模拟动物神经网络行为特征、分布式并行信息处理算法的数学模型。这种网络依赖于系统的复杂性,通过调整大量内部节点之间的关系,从而达到处理信息的目的。
大数据和神经网络(以及其他人工智能)经常一起讨论,而且它们密切相关。正是因为有大量关于用户行为的网络大数据,我们可以利用神经网络等方法对大数据进行分析,从而模拟人类的行为,使计算机也能识别图形、识别声音、分析问题、找到问题的最优解等。大数据的出现和兴起,也带动了神经网络技术的发展。为了处理大量的搜索行为数据,Google投入了大量的研究人员对人工神经网络进行优化以提高效率,最终开发出alpha狗。阿里巴巴、百度等其他公司也在神经网络等人工智能技术领域投入了大量研究人员。
神经网络和大数据可以简单地分别与人的大脑和所见所闻进行比较。神经网络是一种数据处理方法,它往往依赖于计算机程序;大数据是大量的客观数据和信息,大数据不依赖于计算机程序,而是存储在硬盘、云硬盘等物理设备中。
神经网络最少要多少数据 深度神经网络 神经网络训练数据集大小
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。