python运行速度快吗 操控excel,选择Python还是vba?
操控excel,选择Python还是vba?
对于大量数据,建议使用Python。VBA通常将数据存储在内存中。当数据没有分割,计算机配置不高时,会出现更多的卡。经过数据处理后,如果内存没有释放,电脑也会多用一卡通。VBA一般启动两个CPU核进行数据计算,运算效率较低。现在微软已经停止了VBA的更新,建议大家学习python更方便。如果只操作excel,两种学习难度相差不大,但是Python会有更好的发展空间
还有一种更方便的方法,那就是使用power Bi的三个组件进行数据处理,使用power query进行数据处理,使用PowerPivot进行分析查看的优势数据可视化是指学习周期短,数据可以自动刷新,启动速度较快。使用这种方法,效率可能比excel快,但速度仍然不如python快。当然,为了能够长久的持续下去,建议大家学习python,但是起步周期会比较长
觉得你问这个问题的时候,可能主要是怀疑python其实python很多比较好的模块都是用C写的,比如,numpy是一个常用的Python数值计算库,它是用C语言实现的,而且计算机的配置也不像十年前那么低。今年,python掀起了一股依靠人工智能的浪潮。作为人工智能产品开发中最流行的编程语言,人工智能相关产品的开发自然离不开大数据的支持,因此Python能否进行大规模的数值计算,毋庸置疑。
Python能否进行大规模数值计算?
使用python,我对python的使用有一些个人的看法:
1.2017人工智能(包括科学计算)流行了一年,python的用户数量大大增加,这是大势所趋。
2. Python的开发效率远远高于其他高级语言。例如,1000行C语言代码、100行Java代码和20行Python代码就足以说明Python的开发效率。
3. Python的第三方库非常丰富,你会发现只要你想大部分的东西都被打包了库,比如numpy数值计算,Matplotlib,一个类似Matlab的库,用于绘图,panda文件操作库,这些库都会在科学计算中常用。
像python这样运行底层编程语言很费时,所以我们不能在任何地方使用python来实现它。
以上是我的观点。
做科学计算用Python还是MATLAB?
对于那些使用了多种开发语言(Java、C#、nodejs、Erlang)然后转用Python进行机器学习的人,我想谈谈我的看法。
首先,Python真的很慢吗?我的回答是真的。非常慢。for循环比CPP慢两个数量级。
那么为什么要使用Python呢?如果我们遍历超过一亿个数据,两个数量级的差异是不可接受的。但是,如果我们使用Python来执行顶层逻辑并阻塞数以亿计的数据,Python只会循环十几次,剩下的就留给CPU和GPU了。所以两个数量级无关紧要?一毫秒和100毫秒在整个系统中并不重要。
Python最大的优点是它可以非常优雅地将数据抛出到高效的C、CUDA中进行计算。Numpy、panda、numba这些优秀的开源库可以非常方便高效地处理海量数据,借助ZMQ、cell等还可以做分布式计算,gevent借助epoll系统IO优化。因此,它不需要花费太多的精力就可以优雅高效地完成海量数据处理和机器学习任务。这就是Python如此流行的原因。
好好想想。同样的性能,代码只有CPP或Java的三分之一或更少,不是很吸引人吗?
Python语言其实很慢,为什么机器学习这种快速算法步骤通常还是用呢?
开始时,您不必很好地学习算法。但是随着技术的发展,仍然需要算法,否则只能做一些工作。
1. 学好软件开发离不开计算机理论基础,比如数据结构、操作系统、网络技术、算法研究等,如果你喜欢这项技术,那就不是问题。先开始,你可以弥补。
2. 算法是软件开发的灵魂。好的算法写不出好的程序。
3. 如何学习算法,首先选择经典算法教材。基本的可以从数据结构中学习,其中包含一些基本的算法,然后再学习特殊的算法(实际上,在数据结构领域学习算法一般就足够了)。网上还有很多论坛、算法网站,为了吸引眼球,它们一般都很通俗易懂。大多数算法都是C语言,但是语言在算法层次上是相互联系的,因此理解算法模型是最重要的。
4. 只要我们从技术开始,一切都是困难的。该算法在实际应用中是最快、最强的。
我希望我能帮助你
python运行速度快吗 python数值计算教材 python与材料计算
版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。