2016 - 2024

感恩一路有你

稳定的排序算法有哪些 作为一名程序员,需要精通高深的算法吗?为什么?

浏览量:3032 时间:2021-03-15 05:13:59 作者:admin

作为一名程序员,需要精通高深的算法吗?为什么?

太深的算法可以适当学习一些,但是比较常用的算法一定能做到。不仅算法岗需要学习这么多算法,开发岗也需要学习很多常用算法,这样才能在开发过程中编写出高性能的代码。我举个例子。以前,我用MR处理一段数据。在reduce阶段,我需要根据某个值保持顶部,但是如果不能使用其他算法,可以调用quick sort。最坏的时间复杂度是O(n^2)。当数据很大时,你不能用完。如果能够维护大顶堆或bfprt算法,时间复杂度会大大降低。所以算法是非常重要的。

那么,我们需要学习哪些算法?我将列出以下方向

常见的图论算法,如并集搜索、最短路径算法、二部图匹配、网络流、拓扑排序等

例如常见的二分搜索、三分搜索,特别是二分搜索、访谈常问、深度优先搜索和广度优先搜索,经典的八道数字题等等。还有一些启发式搜索算法,如模拟退火算法、遗传算法、粒子群算法、蚁群算法等。

Dijkstra算法用于寻找最短路径、最大子段和、数字DP等

这一类比较大,特别是在机器学习、人工智能、密码学等领域。比如数论中的大数分解,大素数的判定,扩展欧几里德算法,中国剩余定理,卢卡斯定理等等,组合数学中的博弈问题,卡特兰数公式,包含排除原理,波利亚计数等等,计算几何中的极性排序、凸包问题、旋转卡盘问题、多边形核问题、平面最近点对问题等。另外,还有一些矩阵的构造计算,如矩阵的快幂等。

如果要做算法作业,除了上面的一些应用算法外,主要是机器学习、深度学习算法。

为什么归并排序merge sort不需要像动态规划的问题一样考虑每一种划分情况?

为什么合并排序不需要像动态编程那样考虑每个分区?

递归的重要性不言而喻。它是许多算法的基础,例如具有分治思想的算法(合并排序、二叉搜索)、遍历二叉树的算法,或者求解数学递归(斐波那契序列、n的阶乘)、回溯、动态规划等算法,当谈到递归时,总是有点混乱。理论上更容易理解,但当涉及到更复杂的递归算法时,很难想象递归是如何在计算机中实现的。经过一步一步的调试,我们终于明白了,所以我们先把这个过程记录下来。

:就是利用分而治之的思想,排序的过程就是先把数组分成左右两部分,分别排序,然后把有序的两个数组组合成一个有序的数组。

重点分析merge在代码中的作用,sort是一个递归函数,第一个是终止条件P>=R,递归必须有终止条件,否则会陷入循环,最终导致堆栈溢出。为什么堆栈溢出?实际上,底部的递归调用是按下并退出线程堆栈的操作。每次调用都会按一次堆栈,并记录相关的局部变量信息。线程堆栈的内存非常有限。如果递归调用是无限的,它将很快消耗所有的内存资源,并最终导致内存溢出。

下两个调用merge#sortŠC函数本身也是一个递归调用,两个递归调用分别编号为Š1和Š2。在本例中,数组中有六个元素(下标0-5)要排序,那么如何将它们从堆栈中按出?如下图所示:

稳定的排序算法有哪些 六大算法之动态规划 斐波那契数列算法框图

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。