2016 - 2024

感恩一路有你

数据分析的方法有哪些? 想做数据分析是学python还是学大数据?

浏览量:1675 时间:2021-03-13 20:52:11 作者:admin

想做数据分析是学python还是学大数据?

大数据结构中的很多组件都是用Java语言编写的,还有一些是用Scala编写的,比如Hadoop中的HDFS、MapReduce、yarn、ZK、HBase、hive、spark等。这些东西更倾向于数据工程、数据处理和计算。Python语言,包括pandas、numpy、SciPy等数据分析扩展包,通过学习使用这些包,可以充分掌握数据分析的能力。因此,要学习数据分析,建议学习Python而不是大数据。

学Python一定要会算法吗?

开始时,您不必很好地学习算法。但是随着技术的发展,仍然需要算法,否则只能做一些工作。

1. 学好软件开发离不开计算机理论基础,比如数据结构、操作系统、网络技术、算法研究等,如果你喜欢这项技术,那就不是问题。先开始,你可以弥补。

2. 算法是软件开发的灵魂。好的算法写不出好的程序。

3. 如何学习算法,首先选择经典算法教材。基本的可以从数据结构中学习,其中包含一些基本的算法,然后再学习特殊的算法(实际上,在数据结构领域学习算法一般就足够了)。网上还有很多论坛、算法网站,为了吸引眼球,它们一般都很通俗易懂。大多数算法都是C语言,但是语言在算法层次上是相互联系的,因此理解算法模型是最重要的。

4. 万事开头难。只要你开始,剩下的就是慢慢操作这项技术。该算法在实际应用中是最快、最强的。

希望对你有所帮助

有哪些用Python语言讲算法和数据结构的书?

觉得当你问这个问题时,你可能主要怀疑python的性能?事实上,Python的很多更好的模块都是用C语言编写的,比如一个常用的Python数值计算模块库numpy是用C语言实现的,而且计算机的配置也没有十年前那么低。今年,python掀起了一股依靠人工智能的浪潮。作为人工智能产品开发中最流行的编程语言,人工智能相关产品的开发自然离不开大数据的支持,因此Python能否进行大规模的数值计算,毋庸置疑。

Python能否进行大规模数值计算?

首先,数据分析还有一定的难度,但只要通过系统的学习过程,大多数人都能掌握一定的数据分析知识。

数据分析的核心不是编程语言,而是算法设计。无论是统计分析还是机器学习分析,算法设计都是数据分析的核心。因此,数据分析必须有一定的数学基础,包括高等数学、线性代数、概率论等。当然,如果通过工具进行数据分析,即使数学比较薄弱,也可以完成一些基础数据分析任务。例如,Bi工具可以完成大量的企业级数据分析任务。

使用Python语言实现数据分析是大数据领域的常用解决方案。利用Python实现基于机器学习的数据分析需要经过数据采集、数据整理、算法设计、算法实现、算法验证和算法应用等多个步骤。通常需要掌握一些常用的机器学习算法,包括KNN、决策树、支持向量机、朴素贝叶斯等,用Python来完成这些算法比较方便,因为Python的numpy、Matplotlib、SciPy、panda等库都会提供强大的支持。让我们以Matplotlib中的一个简单示例为例:

因为Python语言的语法相对简单,所以学习Python的过程相对容易。难点在于算法的学习。如何在不同的场景下选择不同的算法是关键问题。此外,学习数据分析通常需要对行业知识有一定的了解。不同行业对数据分析维度的要求不同,这些知识需要在工作中积累。在工业互联网发展的背景下,行业知识显得尤为重要。

数据分析的方法有哪些? python数据分析常用的库 数据清洗的基本流程

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。