2016 - 2024

感恩一路有你

神经网络算法三大类 既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?

浏览量:2776 时间:2021-03-10 18:06:01 作者:admin

既然使用神经网络也可以解决分类问题,那SVM、决策树这些算法还有什么意义呢?

这取决于数据量和样本数。不同的样本数和特征数据适合不同的算法。像神经网络这样的深度学习算法需要训练大量的数据集来建立更好的预测模型。许多大型互联网公司更喜欢深度学习算法,因为他们获得的用户数据是数以亿计的海量数据,这更适合于卷积神经网络等深度学习算法。

如果样本数量较少,则更适合使用SVM、决策树和其他机器学习算法。如果你有一个大的数据集,你可以考虑使用卷积神经网络和其他深度学习算法。

以下是一个图表,用于说明根据样本数量和数据集大小选择的任何机器学习算法。

如果你认为它对你有帮助,你可以多表扬,也可以关注它。谢谢您

神经网络算法的作用是什么?

人工神经网络(ANNs)的简称是模仿动物神经网络的行为特征,进行分布式并行信息处理,应用类似大脑突触连接的结构来处理信息的数学模型。这种网络依赖于系统的复杂性,通过调整大量内部节点之间的关系,从而达到处理信息的目的。

中国公共教育与中国科学院教师联合推出了机器学习课程。你可以注意一下

神经网络算法三大类 卷积神经网络算法 深度神经网络

版权声明:本文内容由互联网用户自发贡献,本站不承担相关法律责任.如有侵权/违法内容,本站将立刻删除。